Atomistic simulations of grain boundary segregation in nanocrystalline yttria-stabilized zirconia and gadolinia-doped ceria solid oxide electrolytes

被引:71
作者
Lee, Hark B. [1 ]
Prinz, Friedrich B. [1 ]
Cai, Wei [1 ]
机构
[1] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
Segregation; Grain boundary; Monte Carlo; Molecular dynamics; Nanocrystalline; MOLECULAR-DYNAMICS SIMULATIONS; DEFECT CLUSTER FORMATION; OXYGEN-ION DIFFUSION; PARTICLE MESH EWALD; SPACE-CHARGE; ELECTRICAL-CONDUCTIVITY; SOLUTE SEGREGATION; BLOCKING; PHASE; MICROSTRUCTURE;
D O I
10.1016/j.actamat.2013.03.027
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hybrid Monte Carlo molecular dynamics simulations are carried out to study defect distributions near Sigma 5(3 1 0)/[0 0 1] pure tilt grain boundaries (GBs) in nanocrystalline yttria-stabilized zirconia and gadolinia-doped ceria. The simulations predict equilibrium distributions of dopant cations and oxygen vacancies in the vicinity of the GBs where both materials display considerable amounts of dopant segregation. The predictions are in qualitative agreement with various experimental observations. Further analyses show that the degree of dopant segregation increases with the doping level and applied pressure in both materials. The equilibrium segregation profiles are also strongly influenced by the microscopic structure of the GBs. The high concentration of oxygen vacancies at the GB interface due to lower vacancy formation energies triggers the dopant segregation, and the final segregation profiles are largely determined by the dopant vacancy interaction. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3872 / 3887
页数:16
相关论文
共 77 条
[1]   GRAIN-GROWTH OF DIFFERENTLY DOPED ZIRCONIA [J].
ALLEMANN, JA ;
MICHEL, B ;
MARKI, HB ;
GAUCKLER, LJ ;
MOSER, EM .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1995, 15 (10) :951-958
[2]   Solute segregation and grain-boundary impedance in high-purity stabilized zirconia [J].
Aoki, M ;
Chiang, YM ;
Kosacki, I ;
Lee, IJR ;
Tuller, H ;
Liu, YP .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (05) :1169-1180
[3]  
Bollmann B., 1970, CRYSTAL DEFECTS CRYS
[4]   Blocking Effect in High Purity Nanostructured Cubic Zirconia Ceramics [J].
Boulfrad, S. ;
Djurado, E. ;
Dessemond, L. .
FUEL CELLS, 2008, 8 (05) :313-321
[5]   YTTRIA-CERIA STABILIZED TETRAGONAL ZIRCONIA POLYCRYSTALS - SINTERING, GRAIN-GROWTH AND GRAIN-BOUNDARY SEGREGATION [J].
BOUTZ, MMR ;
WINNUBST, AJA ;
BURGGRAAF, AJ .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 1994, 13 (02) :89-102
[6]   Molecular dynamics simulations of yttria-stabilized zirconia [J].
Brinkman, HW ;
Briels, WJ ;
Verweij, H .
CHEMICAL PHYSICS LETTERS, 1995, 247 (4-6) :386-390
[7]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[8]   SIMULATION OF ELECTROSTATIC SYSTEMS IN PERIODIC BOUNDARY-CONDITIONS .1. LATTICE SUMS AND DIELECTRIC-CONSTANTS [J].
DELEEUW, SW ;
PERRAM, JW ;
SMITH, ER .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 373 (1752) :27-56
[9]   Defect interactions and ionic transport in scandia stabilized zirconia [J].
Devanathan, R. ;
Thevuthasan, S. ;
Gale, J. D. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (26) :5506-5511
[10]  
Dickey EC, 2001, J AM CERAM SOC, V84, P1361, DOI 10.1111/j.1151-2916.2001.tb00842.x