Proteomic Strategies to Evaluate the Impact of Farming Conditions on Food Quality and Safety in Aquaculture Products

被引:18
作者
Carrera, Monica [1 ]
Pineiro, Carmen [2 ]
Martinez, Iciar [3 ,4 ]
机构
[1] CSIC, Inst Marine Res IIM, Food Technol Dept, Vigo 36208, Pontevedra, Spain
[2] CSIC, Inst Marine Res IIM, Sci Instrumentat & Qual Serv SICIM, Vigo 36208, Pontevedra, Spain
[3] Univ Basque Country UPV EHU, Res Ctr Expt Marine Biol & Biotechnol Plentzia Ma, Plentzia 48620, Spain
[4] IKERBASQUE Basque Fdn Sci, Bilbao 48013, Spain
关键词
proteomics; discovery; target; aquaculture; mass spectrometry; dietary management; fish welfare; stress; food safety; antibiotic resistance; BREAM SPARUS-AURATA; MASS-SPECTROMETRY; AEROMONAS-HYDROPHILA; SHOTGUN PROTEOMICS; ANALYSIS REVEALS; MUSCLE-TISSUE; PROTEIN IDENTIFICATION; TARGETED PROTEOMICS; ARCTIC CHARR; FISH-OIL;
D O I
10.3390/foods9081050
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
This review presents the primary applications of various proteomic strategies to evaluate the impact of farming conditions on food quality and safety in aquaculture products. Aquaculture is a quickly growing sector that represents 47% of total fish production. Food quality, dietary management, fish welfare, the stress response, food safety, and antibiotic resistance, which are covered by this review, are among the primary topics in which proteomic techniques and strategies are being successfully applied. The review concludes by outlining future directions and potential perspectives.
引用
收藏
页数:17
相关论文
共 111 条
[1]   Proteomic analysis of muscle tissue from gilthead sea bream (Sparus aurata, L.) farmed in offshore floating cages [J].
Addis, Maria Filippa ;
Cappuccinelli, Roberto ;
Tedde, Vittorio ;
Pagnozzi, Daniela ;
Porcu, Maria Cristina ;
Bonaglini, Elia ;
Roggio, Tonina ;
Uzzau, Sergio .
AQUACULTURE, 2010, 309 (1-4) :245-252
[2]   Mass-spectrometric exploration of proteome structure and function [J].
Aebersold, Ruedi ;
Mann, Matthias .
NATURE, 2016, 537 (7620) :347-355
[3]   Applications and Developments in Targeted Proteomics: From SRM to DIA/SWATH [J].
Aebersold, Ruedi ;
Bensimon, Ariel ;
Collins, Ben C. ;
Ludwig, Christina ;
Sabido, Eduard .
PROTEOMICS, 2016, 16 (15-16) :2065-2067
[4]  
[Anonymous], 1994, Food Agriculture Org.
[5]  
[Anonymous], 2008, The State of World Fisheries and Aquaculture 2006
[6]  
Apraiz I., 2009, J PROTEOM BIOINFORM, V2, P255, DOI [10.4172/jpb.1000084, DOI 10.4172/JPB.1000084]
[7]   Proteomics and antioxidant enzymes reveal different mechanisms of toxicity induced by ionic and nanoparticulate silver in bacteria [J].
Barros, Diana ;
Pradhan, Arunava ;
Mendes, Vera M. ;
Manadas, Bruno ;
Santos, Pedro M. ;
Pascoal, Claudia ;
Cassio, Fernanda .
ENVIRONMENTAL SCIENCE-NANO, 2019, 6 (04) :1207-1218
[8]   Species-Specific Discrimination of Insect Meals for Aquafeeds by Direct Comparison of Tandem Mass Spectra [J].
Belghit, Ikram ;
Lock, Erik-Jan ;
Fumiere, Olivier ;
Lecrenier, Marie-Caroline ;
Renard, Patricia ;
Dieu, Marc ;
Berntssen, Marc H. G. ;
Palmblad, Magnus ;
Rasinger, Josef D. .
ANIMALS, 2019, 9 (05)
[9]   The development of selected reaction monitoring methods for targeted proteomics via empirical refinement [J].
Bereman, Michael S. ;
MacLean, Brendan ;
Tomazela, Daniela M. ;
Liebler, Daniel C. ;
MacCoss, Michael J. .
PROTEOMICS, 2012, 12 (08) :1134-1141
[10]   Multiplexed absolute quantification in proteomics using artificial QCAT proteins of concatenated signature peptides [J].
Beynon, RJ ;
Doherty, MK ;
Pratt, JM ;
Gaskell, SJ .
NATURE METHODS, 2005, 2 (08) :587-589