Supramolecular Perylene Bisimide-Polysulfide Gel Networks as Nanostructured Redox Mediators in Dissolved Polysulfide Lithium-Sulfur Batteries

被引:76
作者
Frischmann, Peter D. [1 ]
Gerber, Laura C. H. [1 ]
Doris, Sean E. [1 ,2 ]
Tsai, Erica Y. [1 ]
Fan, Frank Y. [3 ]
Qu, Xiaohui [4 ]
Jain, Anubhav [4 ]
Persson, Kristin A. [4 ]
Chiang, Yet-Ming [3 ]
Helms, Brett A. [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[3] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
关键词
HIGH-ENERGY-DENSITY; LI-S BATTERIES; ORGANIC ELECTRODE MATERIALS; FLOW BATTERIES; ION STORAGE; PERFORMANCE; CATHODE; CHEMISTRY; CONDUCTION; SEPARATORS;
D O I
10.1021/acs.chemmater.5b02955
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Here we report a new redox-active perylene bisimide (PBI)-polysulfide (PS) gel that overcomes electronic charge-transport bottlenecks common to lithium-sulfur (Li-S) hybrid redox flow batteries designed for long-duration grid-scale energy storage applications. PBI was identified as a supramolecular redox mediator for soluble lithium polysulfides from a library of 85 polycyclic aromatic hydrocarbons by using a high-throughput computational platform; furthermore, these theoretical predictions were validated electrochemically. Challenging conventional wisdom, we found that pi-stacked PBI assemblies were stable even in their reduced state through secondary interactions between PBI nanofibers and Li2Sn, which resulted in a redoxactive, flowable 3-D gel network. The influence of supramolecular charge-transporting PBI-PS gel networks on Li-S battery performance was investigated in depth and revealed enhanced sulfur utilization and rate performance (C/4 and C/8) at a sulfur loading of 4 mg cm(-2) and energy density of 44 Wh L-1 in the absence of conductive carbon additives.
引用
收藏
页码:6765 / 6770
页数:6
相关论文
共 61 条
[1]   Functional Supramolecular Polymers [J].
Aida, T. ;
Meijer, E. W. ;
Stupp, S. I. .
SCIENCE, 2012, 335 (6070) :813-817
[2]   Gels as a soft matter route to conducting nanostructured organic and composite materials [J].
Amabilino, David B. ;
Puigmarti-Luis, Josep .
SOFT MATTER, 2010, 6 (08) :1605-1612
[3]   Toward a Molecular Understanding of Energetics in Li-S Batteries Using Nonaqueous Electrolytes: A High-Level Quantum Chemical Study [J].
Assary, Rajeev S. ;
Curtiss, Larry A. ;
Moore, Jeffrey S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (22) :11545-11558
[4]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[5]   Functional π-Gelators and Their Applications [J].
Babu, Sukumaran Santhosh ;
Praveen, Vakayil K. ;
Ajayaghosh, Ayyappanpillai .
CHEMICAL REVIEWS, 2014, 114 (04) :1973-2129
[6]   Lithium/Sulfur Cell Discharge Mechanism: An Original Approach for Intermediate Species Identification [J].
Barchasz, Celine ;
Molton, Florian ;
Duboc, Carole ;
Lepretre, Jean-Claude ;
Patoux, Sebastien ;
Alloin, Fannie .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :3973-3980
[7]  
Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
[8]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[9]   Sulphur-impregnated flow cathode to enable high-energy-density lithium flow batteries [J].
Chen, Hongning ;
Zou, Qingli ;
Liang, Zhuojian ;
Liu, Hao ;
Li, Quan ;
Lu, Yi-Chun .
NATURE COMMUNICATIONS, 2015, 6
[10]   Assembly and Fiber Formation of a Gemini-Type Hexathienocoronene Amphiphile for Electrical Conduction [J].
Chen, Long ;
Mali, Kunal S. ;
Puniredd, Sreenivasa R. ;
Baumgarten, Martin ;
Parvez, Khaled ;
Pisula, Wojciech ;
De Feyter, Steven ;
Muellen, Klaus .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (36) :13531-13537