Infeasible path-following interior point algorithm for Cartesian P*() nonlinear complementarity problems over symmetric cones

被引:3
作者
Zhao, Huali [1 ,2 ]
Liu, Hongwei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Xianyang Normal Univ, Sch Math & Informat Sci, Xianyang 712000, Peoples R China
关键词
Cartesian P*(kappa); nonlinear complementarity problem; infeasible; interior point algorithm; symmetric cone; LCP;
D O I
10.1080/00207160.2017.1297803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a theoretical framework of infeasible path-following interior point algorithm for Cartesian inline-graphic> nonlinear complementarity problems over symmetric cones using a wide neighbourhood of the central path. In order to prove the convergence of the proposed algorithm, we propose a scaled Lipschitz condition which has scaling invariance. Under the condition, we estimate the iteration complexities of the proposed algorithm and provide some numerical results. The numerical results show that the algorithm is efficient and reliable.
引用
收藏
页码:845 / 869
页数:25
相关论文
共 26 条
[11]   A New Wide Neighborhood Primal-Dual Infeasible-Interior-Point Method for Symmetric Cone Programming [J].
Liu, Hongwei ;
Yang, Ximei ;
Liu, Changhe .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 158 (03) :796-815
[12]   Mehrotra-type predictor-corrector algorithms for sufficient linear complementarity problem [J].
Liu, Hongwei ;
Liu, Xinze ;
Liu, Changhe .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (12) :1685-1700
[13]  
Liu X., 2013, OPTIMIZATION, V64, P1, DOI DOI 10.1155/2013/197370
[14]   INFEASIBLE MEHROTRA-TYPE PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM FOR THE CARTESIAN P* (κ)-LCP OVER SYMMETRIC CONES [J].
Liu, Xinze ;
Liu, Hongwei ;
Liu, Changhe .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2014, 35 (05) :588-610
[15]  
Luo ZY, 2009, ACTA MATH APPL SIN-E, V25, P593, DOI 10.1007/s10255-008-8814-2
[16]   Path-following interior point algorithms for the Cartesian P *(κ)-LCP over symmetric cones [J].
Luo ZiYan ;
Xiu NaiHua .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (08) :1769-1784
[17]   On a commutative class of search directions for linear programming over symmetric cones [J].
Muramatsu, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2002, 112 (03) :595-625
[18]  
Murty K.G., 1998, SIGMA SER APPL MATH, V3
[19]   Polynomial convergence of infeasible-interior-point methods over symmetric cones [J].
Rangarajan, BK .
SIAM JOURNAL ON OPTIMIZATION, 2006, 16 (04) :1211-1229
[20]   Extension of primal-dual interior point algorithms to symmetric cones [J].
Schmieta, SH ;
Alizadeh, F .
MATHEMATICAL PROGRAMMING, 2003, 96 (03) :409-438