Infeasible path-following interior point algorithm for Cartesian P*() nonlinear complementarity problems over symmetric cones

被引:3
作者
Zhao, Huali [1 ,2 ]
Liu, Hongwei [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[2] Xianyang Normal Univ, Sch Math & Informat Sci, Xianyang 712000, Peoples R China
关键词
Cartesian P*(kappa); nonlinear complementarity problem; infeasible; interior point algorithm; symmetric cone; LCP;
D O I
10.1080/00207160.2017.1297803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish a theoretical framework of infeasible path-following interior point algorithm for Cartesian inline-graphic> nonlinear complementarity problems over symmetric cones using a wide neighbourhood of the central path. In order to prove the convergence of the proposed algorithm, we propose a scaled Lipschitz condition which has scaling invariance. Under the condition, we estimate the iteration complexities of the proposed algorithm and provide some numerical results. The numerical results show that the algorithm is efficient and reliable.
引用
收藏
页码:845 / 869
页数:25
相关论文
共 26 条
[1]  
AHN BH, 1983, MATH PROGRAM, V26, P295, DOI 10.1007/BF02591868
[2]   An O(√nL) iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone LCP [J].
Ai, WB ;
Zhang, SZ .
SIAM JOURNAL ON OPTIMIZATION, 2005, 16 (02) :400-417
[3]   On a homogeneous algorithm for the monotone complementarity problem [J].
Andersen, ED ;
Ye, YY .
MATHEMATICAL PROGRAMMING, 1999, 84 (02) :375-399
[4]   Cartesian P-property and its applications to the semidefinite linear complementarity problem [J].
Chen, X ;
Qi, HD .
MATHEMATICAL PROGRAMMING, 2006, 106 (01) :177-201
[5]  
Faraut J., 1994, ANAL SYMMETRIC CONE
[6]   COMPUTATIONAL COMPLEXITY OF LCPS ASSOCIATED WITH POSITIVE DEFINITE SYMMETRIC MATRICES [J].
FATHI, Y .
MATHEMATICAL PROGRAMMING, 1979, 17 (03) :335-344
[7]   Linear systems in Jordan algebras and primal-dual interior-point algorithms [J].
Faybusovich, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 86 (01) :149-175
[8]  
KONG LC, 2006, 200624 CORR U WAT DE
[9]   Interior-point methods for Cartesian P*(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions [J].
Lesaja, G. ;
Wang, G. Q. ;
Zhu, D. T. .
OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5) :827-843
[10]   Kernel-Based Interior-Point Methods for Monotone Linear Complementarity Problems over Symmetric Cones [J].
Lesaja, G. ;
Roos, C. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 150 (03) :444-474