Regression analysis for complex survey data with missing values of a covariate

被引:8
|
作者
Skinner, CJ [1 ]
Coker, O [1 ]
机构
[1] ECON & SOCIAL RES COUNCIL RES CTR,COLCHESTER,ESSEX,ENGLAND
来源
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY | 1996年 / 159卷
关键词
jackknife; missing data; non-response; pseudolikelihood; sampling scheme;
D O I
10.2307/2983173
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Incomplete observations with missing values of a covariate may be incorporated into the fitting of a linear regression model by maximum likelihood methods. This paper considers the extension of these methods to accommodate a complex sampling design. Point estimators are weighted within a pseudomaximum likelihood framework. Standard errors are estimated by a jackknife method. The approach is applied to the fitting of a linear regression model to data from the British Household Panel Survey, where the response variable is a measure of stress and the covariate with missing values is income.
引用
收藏
页码:265 / 274
页数:10
相关论文
共 50 条
  • [1] Logistic regression models with missing covariate values for complex survey data
    Gao, SJ
    Hui, SL
    STATISTICS IN MEDICINE, 1997, 16 (21) : 2419 - 2428
  • [2] Logistic regression models with missing covariate values for complex survey data
    Gao, SJ
    Hui, SL
    AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 148 - 153
  • [3] Nonparametric regression with discrete covariate and missing values
    Chen, Song Xi
    Tang, Cheng Yong
    STATISTICS AND ITS INTERFACE, 2011, 4 (04) : 463 - 474
  • [4] Regression analysis with missing covariate data using estimating equations
    Zhao, LP
    Lipsitz, S
    Lew, D
    BIOMETRICS, 1996, 52 (04) : 1165 - 1182
  • [5] Weighted semiparametric estimation in regression analysis with missing covariate data
    Wang, CY
    Wang, SJ
    Zhao, LP
    Ou, ST
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1997, 92 (438) : 512 - 525
  • [6] Regression analysis with missing covariate data using estimating equations
    Zhao, L. P.
    Lipsitz, S.
    Lew, D.
    Biometrics, 52 (04):
  • [7] Estimation and imputation in linear regression with missing values in both response and covariate
    Shao, Jun
    STATISTICS AND ITS INTERFACE, 2013, 6 (03) : 361 - 368
  • [8] Cox regression with survival-time-dependent missing covariate values
    Yi, Yanyao
    Ye, Ting
    Yu, Menggang
    Shao, Jun
    BIOMETRICS, 2020, 76 (02) : 460 - 471
  • [9] A weighted estimating equation for linear regression with missing covariate data
    Parzen, M
    Lipsitz, SR
    Ibrahim, JG
    Lipshultz, S
    STATISTICS IN MEDICINE, 2002, 21 (16) : 2421 - 2436
  • [10] Cox regression model with mismeasured covariates or missing covariate data
    Zhong, M
    Sen, PK
    Cai, JW
    AMERICAN STATISTICAL ASSOCIATION 1996 PROCEEDINGS OF THE BIOMETRICS SECTION, 1996, : 323 - 328