Large-Mode-Area All-Solid Photonic Bandgap Fibers for the Mitigation of Optical Nonlinearities

被引:23
作者
Dong, Liang [1 ]
Kong, Fanting [1 ]
Gu, Guancheng [1 ]
Hawkins, Thomas Wade [1 ]
Jones, Maxwell [1 ]
Parsons, Joshua [1 ]
Kalichevsky-Dong, Monica T. [1 ]
Saitoh, Kunimasa [2 ]
Pulford, Benjamin [3 ]
Dajani, Iyad [3 ]
机构
[1] Clemson Univ, Anderson, SC 29625 USA
[2] Hokkaido Univ, Grad Sch Informat Sci & Technol, Sapporo, Hokkaido 0600814, Japan
[3] Kirtland Air Force Base, Air Force Res Lab, Albuquerque, NM 87117 USA
关键词
Optical fiber lasers; optical fiber amplifiers; optical fibers; SINGLE-MODE; SUPPRESSION; INSTABILITY; AMPLIFIER; DESIGN;
D O I
10.1109/JSTQE.2015.2451012
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
There is still significant need for power scaling of fiber lasers. Large-mode-area fibers are a key for the mitigation of optical nonlinearities. In recent years, mode instability has shown itself to be an additional significant limiting factor for single-mode power scaling in the regime of a few hundred watts to kilowatts. It is better appreciated now that further power scaling requires significant high-order-mode suppression in addition to a large effective mode area in a fiber. In recent years, we have shown that all-solid photonic bandgap fibers are a superior approach due to their unsurpassed higher-order-mode suppression in large-mode-area designs, making them well suited for applications at high average powers. We will review of some of the recent progress, challenges, and prospects of all-solid photonic bandgap fibers in this invited paper.
引用
收藏
页码:316 / 322
页数:7
相关论文
共 36 条
[1]   Photonic bandgap with an index step of one percent [J].
Argyros, A ;
Birks, TA ;
Leon-Saval, SG ;
Cordeiro, CMB ;
Luan, F ;
Russell, PSJ .
OPTICS EXPRESS, 2005, 13 (01) :309-314
[2]   Single-Mode, Large Mode Area, Solid-Core Photonic BandGap Fiber With Hetero-Structured Cladding [J].
Baz, Assaad ;
Bigot, Laurent ;
Bouwmans, Geraud ;
Quiquempois, Yves .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (05) :830-835
[3]   Approximate band structure calculation for photonic bandgap fibres [J].
Birks, T. A. ;
Pearce, G. J. ;
Bird, D. M. .
OPTICS EXPRESS, 2006, 14 (20) :9483-9490
[4]   Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (< 20 dB/km) around 1550 nm [J].
Bouwmans, G ;
Bigot, L ;
Quiquempois, Y ;
Lopez, F ;
Provino, L ;
Douay, M .
OPTICS EXPRESS, 2005, 13 (21) :8452-8459
[5]   Understanding air-core photonic-bandgap fibers: Analogy to conventional fibers [J].
Digonnet, MJF ;
Kim, HK ;
Kino, GS ;
Fan, SH .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (12) :4169-4177
[6]   Stimulated thermal Rayleigh scattering in optical fibers [J].
Dong, Liang .
OPTICS EXPRESS, 2013, 21 (03) :2642-2656
[7]   A vector boundary matching technique for efficient and accurate determination of photonic bandgaps in photonic bandgap fibers [J].
Dong, Liang .
OPTICS EXPRESS, 2011, 19 (13) :12582-12593
[8]   Single-mode all-silica photonic bandgap fiber with 20-μm mode-field diameter [J].
Egorova, O. N. ;
Semjonov, S. L. ;
Kosolapov, A. F. ;
Denisov, A. N. ;
Pryamikov, A. D. ;
Gaponov, D. A. ;
Biriukov, A. S. ;
Dianov, E. M. ;
Salganskii, M. Y. ;
Khopin, V. F. ;
Yashkov, M. V. ;
Gurianov, A. N. ;
Kuksenkov, D. V. .
OPTICS EXPRESS, 2008, 16 (16) :11735-11740
[9]   Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers [J].
Eidam, Tino ;
Wirth, Christian ;
Jauregui, Cesar ;
Stutzki, Fabian ;
Jansen, Florian ;
Otto, Hans-Juergen ;
Schmidt, Oliver ;
Schreiber, Thomas ;
Limpert, Jens ;
Tuennermann, Andreas .
OPTICS EXPRESS, 2011, 19 (14) :13218-13224
[10]   High power Yb-doped photonic bandgap fiber oscillator at 1178 nm [J].
Fan, Xinyan ;
Chen, Meishin ;
Shirakawa, Akira ;
Ueda, Ken-ichi ;
Olausson, Christina B. ;
Lyngso, Jens K. ;
Broeng, Jes .
OPTICS EXPRESS, 2012, 20 (13) :14471-14476