Models and computational strategies linking physiological response to molecular networks from large-scale data

被引:10
作者
Ortega, Fernando [1 ,2 ]
Sameith, Katrin [1 ,2 ]
Turan, Nil [1 ,2 ]
Compton, Russell [1 ,2 ]
Trevino, Victor [1 ,2 ]
Vannucci, Marina [3 ]
Falciani, Francesco [1 ,2 ]
机构
[1] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
[2] Univ Birmingham, IBR, Birmingham B15 2TT, W Midlands, England
[3] Rice Univ, Dept Stat, Houston, TX 77251 USA
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2008年 / 366卷 / 1878期
基金
英国生物技术与生命科学研究理事会;
关键词
functional modules; statistical modelling; network inference; systems biology;
D O I
10.1098/rsta.2008.0085
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
An important area of research in systems biology involves the analysis and integration of genome-wide functional datasets. In this context, a major goal is the identification of a putative molecular network controlling physiological response from experimental data. With very fragmentary mechanistic information, this is a challenging task. A number of methods have been developed, each one with the potential to address an aspect of the problem. Here, we review some of the most widely used methodologies and report new results in support of the usefulness of modularization and other modelling techniques in identifying components of the molecular networks that are predictive of physiological response. We also discuss how system identification in biology could be approached, using a combination of methodologies that aim to reconstruct the relationship between molecular pathways and physiology at different levels of the organizational complexity of the molecular network.
引用
收藏
页码:3067 / 3089
页数:23
相关论文
共 56 条
[1]   Network motifs: theory and experimental approaches [J].
Alon, Uri .
NATURE REVIEWS GENETICS, 2007, 8 (06) :450-461
[2]  
Antoniotti M, 2003, Pac Symp Biocomput, P116
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   An automated method for finding molecular complexes in large protein interaction networks [J].
Bader, GD ;
Hogue, CW .
BMC BIOINFORMATICS, 2003, 4 (1)
[5]   Prediction by supervised principal components [J].
Bair, E ;
Hastie, T ;
Paul, D ;
Tibshirani, R .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :119-137
[6]   Inference of gene regulatory networks and compound mode of action from time course gene expression profiles [J].
Bansal, M ;
Della Gatta, G ;
di Bernardo, D .
BIOINFORMATICS, 2006, 22 (07) :815-822
[7]   How to infer gene networks from expression profiles [J].
Bansal, Mukesh ;
Belcastro, Vincenzo ;
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[8]   Reverse engineering of regulatory networks in human B cells [J].
Basso, K ;
Margolin, AA ;
Stolovitzky, G ;
Klein, U ;
Dalla-Favera, R ;
Califano, A .
NATURE GENETICS, 2005, 37 (04) :382-390
[9]   A Bayesian approach to reconstructing genetic regulatory networks with hidden factors [J].
Beal, MJ ;
Falciani, F ;
Ghahramani, Z ;
Rangel, C ;
Wild, DL .
BIOINFORMATICS, 2005, 21 (03) :349-356
[10]   The Inferelator:: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo [J].
Bonneau, Richard ;
Reiss, David J. ;
Shannon, Paul ;
Facciotti, Marc ;
Hood, Leroy ;
Baliga, Nitin S. ;
Thorsson, Vesteinn .
GENOME BIOLOGY, 2006, 7 (05)