Models and computational strategies linking physiological response to molecular networks from large-scale data
被引:10
作者:
论文数: 引用数:
h-index:
机构:
Ortega, Fernando
[1
,2
]
论文数: 引用数:
h-index:
机构:
Sameith, Katrin
[1
,2
]
Turan, Nil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
Univ Birmingham, IBR, Birmingham B15 2TT, W Midlands, EnglandUniv Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
Turan, Nil
[1
,2
]
论文数: 引用数:
h-index:
机构:
Compton, Russell
[1
,2
]
Trevino, Victor
论文数: 0引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
Univ Birmingham, IBR, Birmingham B15 2TT, W Midlands, EnglandUniv Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
Trevino, Victor
[1
,2
]
Vannucci, Marina
论文数: 0引用数: 0
h-index: 0
机构:
Rice Univ, Dept Stat, Houston, TX 77251 USAUniv Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
Vannucci, Marina
[3
]
Falciani, Francesco
论文数: 0引用数: 0
h-index: 0
机构:
Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
Univ Birmingham, IBR, Birmingham B15 2TT, W Midlands, EnglandUniv Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
Falciani, Francesco
[1
,2
]
机构:
[1] Univ Birmingham, Sch Biosci, Birmingham B15 2TT, W Midlands, England
[2] Univ Birmingham, IBR, Birmingham B15 2TT, W Midlands, England
[3] Rice Univ, Dept Stat, Houston, TX 77251 USA
来源:
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES
|
2008年
/
366卷
/
1878期
基金:
英国生物技术与生命科学研究理事会;
关键词:
functional modules;
statistical modelling;
network inference;
systems biology;
D O I:
10.1098/rsta.2008.0085
中图分类号:
O [数理科学和化学];
P [天文学、地球科学];
Q [生物科学];
N [自然科学总论];
学科分类号:
07 ;
0710 ;
09 ;
摘要:
An important area of research in systems biology involves the analysis and integration of genome-wide functional datasets. In this context, a major goal is the identification of a putative molecular network controlling physiological response from experimental data. With very fragmentary mechanistic information, this is a challenging task. A number of methods have been developed, each one with the potential to address an aspect of the problem. Here, we review some of the most widely used methodologies and report new results in support of the usefulness of modularization and other modelling techniques in identifying components of the molecular networks that are predictive of physiological response. We also discuss how system identification in biology could be approached, using a combination of methodologies that aim to reconstruct the relationship between molecular pathways and physiology at different levels of the organizational complexity of the molecular network.