A Novel Action Recognition Scheme Based on Spatial-Temporal Pyramid Model

被引:0
|
作者
Zhao, Hengying [1 ]
Xiang, Xinguang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
关键词
Action recognition; Spatial-temporal; Multi-scale; Visual dictionary; DENSE;
D O I
10.1007/978-3-319-77383-4_21
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recognizing actions is one of the most important challenges in computer vision. In this paper, we propose a novel action recognition scheme based on spatial-temporal pyramid model. Firstly, we extract the basic visual feature descriptors for each video. Secondly, we construct visual dictionary on the whole visual features set. Thirdly, we construct a novel spatial-temporal pyramid model by dividing the visual features set of each video into multi-scale blocks in 2-dimensional space domain and 1-dimensional time domain separately. Then we calculate the distribution histogram representation for each block of different scales by using the bag-of-features model and our new visual dictionary. At last, we normalize the final descriptors for videos and then recognize the actions using SVM. Experimental results show that our scheme achieves more accurate for action recognition compared with several state-of-the-art methods.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 50 条
  • [21] Action recognition with spatial-temporal discriminative filter banks
    Martinez, Brais
    Modolo, Davide
    Xiong, Yuanjun
    Tighe, Joseph
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5481 - 5490
  • [22] Grouped Spatial-Temporal Aggregation for Efficient Action Recognition
    Luo, Chenxu
    Yuille, Alan
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5511 - 5520
  • [23] Select and Focus: Action Recognition with Spatial-Temporal Attention
    Chan, Wensong
    Tian, Zhiqiang
    Liu, Shuai
    Ren, Jing
    Lan, Xuguang
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT III, 2019, 11742 : 461 - 471
  • [24] Spatial-Temporal Interleaved Network for Efficient Action Recognition
    Jiang, Shengqin
    Zhang, Haokui
    Qi, Yuankai
    Liu, Qingshan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025, 21 (01) : 178 - 187
  • [25] TranSkeleton: Hierarchical Spatial-Temporal Transformer for Skeleton-Based Action Recognition
    Liu, Haowei
    Liu, Yongcheng
    Chen, Yuxin
    Yuan, Chunfeng
    Li, Bing
    Hu, Weiming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (08) : 4137 - 4148
  • [26] STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition
    Zhu, Xiaoyu
    Huang, Po-Yao
    Liang, Junwei
    de Melo, Celso M.
    Hauptmann, Alexander
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1526 - 1536
  • [27] Deep Spatial-Temporal Model Based Cross-Scene Action Recognition Using Commodity WiFi
    Sheng, Biyun
    Xiao, Fu
    Sha, Letian
    Sun, Lijuan
    IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (04) : 3592 - 3601
  • [28] A Spatial-Temporal Feature Fusion Strategy for Skeleton-Based Action Recognition
    Chen, Yitian
    Xu, Yuchen
    Xie, Qianglai
    Xiong, Lei
    Yao, Leiyue
    2023 INTERNATIONAL CONFERENCE ON DATA SECURITY AND PRIVACY PROTECTION, DSPP, 2023, : 207 - 215
  • [29] Information analysis of local suppression scheme based on a spatial-temporal model
    Kim, Dal Ho
    Lee, Jayoun
    Kim, Yongku
    JOURNAL OF APPLIED STATISTICS, 2018, 45 (16) : 2929 - 2942
  • [30] Focal and Global Spatial-Temporal Transformer for Skeleton-Based Action Recognition
    Gao, Zhimin
    Wang, Peitao
    Lv, Pei
    Jiang, Xiaoheng
    Liu, Qidong
    Wang, Pichao
    Xu, Mingliang
    Li, Wanqing
    COMPUTER VISION - ACCV 2022, PT IV, 2023, 13844 : 155 - 171