Model choice using reversible jump Markov chain Monte Carlo

被引:71
作者
Hastie, David I. [1 ]
Green, Peter J. [2 ]
机构
[1] Imperial Coll London St Marys, Dept Epidemiol & Biostat, London W2 1PG, England
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
关键词
across-model sampling; Bayes factors; Bayesian model determination; posterior model probabilities; transdimensional inference; variable dimension problems; BAYESIAN MODEL; PROPOSAL DISTRIBUTIONS; UNKNOWN NUMBER; MIXTURE-MODELS; MCMC; CONSTRUCTION; COMPUTATION; SIMULATION; COMPONENTS; SELECTION;
D O I
10.1111/j.1467-9574.2012.00516.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We review the across-model simulation approach to computation for Bayesian model determination, based on the reversible jump Markov chain Monte Carlo method. Advantages, difficulties and variations of the methods are discussed. We also discuss some limitations of the ideal Bayesian view of the model determination problem, for which no computational methods can provide a cure.
引用
收藏
页码:309 / 338
页数:30
相关论文
共 57 条
[1]   Improving the acceptance rate of reversible jump MCMC proposals [J].
Al-Awadhi, F ;
Hurn, M ;
Jennison, C .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (02) :189-198
[2]  
ANDRIEU C, 2000, UNCERTAINTY ARTIFICI, P11
[3]  
[Anonymous], 2001, Sequential Monte Carlo methods in practice
[4]   Efficient Bayes factor estimation from the reversible jump output [J].
Bartolucci, F ;
Scaccia, L ;
Mira, A .
BIOMETRIKA, 2006, 93 (01) :41-52
[5]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[6]  
Besag J., 1997, J ROYAL STAT SOC B, V59, P774
[7]  
BESAG J, 2000, 9 U WASH CTR STAT SO
[8]  
Brooks S, 1998, AM STAT ASS 1998 P S
[9]   Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions [J].
Brooks, SP ;
Giudici, P ;
Roberts, GO .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2003, 65 :3-39
[10]  
Brooks SP, 1998, J ROY STAT SOC D-STA, V47, P69, DOI 10.1111/1467-9884.00117