CRITICAL BROWNIAN SHEET DOES NOT HAVE DOUBLE POINTS

被引:12
作者
Dalang, Robert C. [1 ]
Khoshnevisan, Davar [2 ]
Nualart, Eulalia [3 ]
Wu, Dongsheng [4 ]
Xiao, Yimin [5 ]
机构
[1] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ Utah, Dept Math, Salt Lake City, UT 84112 USA
[3] Univ Paris 13, Inst Galilee, F-93430 Villetaneuse, France
[4] Univ Alabama, Dept Math Sci, Huntsville, AL 35899 USA
[5] Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48824 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Brownian sheet; multiple points; capacity; Hausdorff dimension; DIMENSION; GEOMETRY; IMAGES;
D O I
10.1214/11-AOP665
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We derive a decoupling formula for the Brownian sheet which has the following ready consequence: An N-parameter Brownian sheet in R-d has double points if and only if d < 4N. In particular, in the critical case where d = 4N, the Brownian sheet does not have double points. This answers an old problem in the folklore of the subject. We also discuss some of the geometric consequences of the mentioned decoupling, and establish a partial result concerning k-multiple points in the critical case k(d - 2N) = d.
引用
收藏
页码:1829 / 1859
页数:31
相关论文
共 28 条
[1]  
[Anonymous], 1957, P CAMB PHILOS SOC, DOI DOI 10.1017/S0305004100032989
[2]  
[Anonymous], DECOUPLING DEFENDENC
[3]   Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields [J].
Bierme, Hermine ;
Lacaux, Celine ;
Xiao, Yimin .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2009, 41 :253-273
[4]   STOCHASTIC INTEGRALS IN PLANE [J].
CAIROLI, R ;
WALSH, JB .
ACTA MATHEMATICA, 1975, 134 (1-2) :111-183
[5]  
Centsov N. N., 1956, Dokl. Akad. Nauk SSSR, V106, P607
[6]   Potential theory for hyperbolic SPDEs [J].
Dalang, RC ;
Nualart, E .
ANNALS OF PROBABILITY, 2004, 32 (3A) :2099-2148
[7]  
Dalang Robert C., 2007, ALEA-LAT AM J PROBAB, V3, P231
[8]  
Dvoretzky A., 1954, Bull. Res. Council Israel, V3, P364
[9]  
Dvoretzky A., 1950, Acta Sci. Math. Szeged, V12, P75
[10]  
Kakutani Shizuo, 1944, P IMP ACAD TOKYO, V20, P648