Exact eigenvalue spectrum of a class of fractal scale-free networks

被引:16
作者
Zhang, Zhongzhi [1 ,2 ]
Hu, Zhengyi [1 ,2 ]
Sheng, Yibin [3 ]
Chen, Guanrong [4 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[3] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[4] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
SPANNING-TREES; RANDOM-WALKS; COMPLEX; GRAPHS;
D O I
10.1209/0295-5075/99/10007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The eigenvalue spectrum of the transition matrix of a network encodes important information about its structural and dynamical properties. We study the transition matrix of a family of fractal scale-free networks and analytically determine all the eigenvalues and their degeneracies. We then use these eigenvalues to evaluate the closed-form solution to the eigentime for random walks on the networks under consideration. Through the connection between the spectrum of transition matrix and the number of spanning trees, we corroborate the obtained eigenvalues and their multiplicities. Copyright (C) EPLA, 2012
引用
收藏
页数:6
相关论文
共 55 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]  
[Anonymous], RANDOM WALKS RANDOM
[3]  
[Anonymous], 1995, Oxford science publications
[4]  
[Anonymous], 1994, Aspects and Applications of the Random Walk
[5]  
[Anonymous], 1999, REVERSIBLE MARKOV CH
[6]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[7]   Network physiology reveals relations between network topology and physiological function [J].
Bashan, Amir ;
Bartsch, Ronny P. ;
Kantelhardt, Jan. W. ;
Havlin, Shlomo ;
Ivanov, Plamen Ch .
NATURE COMMUNICATIONS, 2012, 3
[8]   Intermittent search strategies [J].
Benichou, O. ;
Loverdo, C. ;
Moreau, M. ;
Voituriez, R. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (01) :81-129
[9]  
Biggs N., 1993, Algebraic graph theory
[10]   Dynamics of Vicsek fractals, models for hyperbranched polymers [J].
Blumen, A ;
Jurjiu, A ;
Koslowski, T ;
von Ferber, C .
PHYSICAL REVIEW E, 2003, 67 (06) :4