Infinite curvature on typical convex surfaces

被引:4
作者
Adiprasito, Karim [1 ]
机构
[1] Free Univ Berlin, Berlin, Germany
关键词
Baire category; Convex body; Typical; Curvature; Umbilical points;
D O I
10.1007/s10711-011-9658-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Solving a long-standing open question of Zamfirescu, we will show that typical convex surfaces contain points of infinite curvature in all tangent directions. To prove this, we use an easy curvature definition imitating the idea of Alexandrov spaces of bounded curvature, and show continuity properties for this notion.
引用
收藏
页码:267 / 275
页数:9
相关论文
共 10 条
[1]  
Adiprasito K., J CONVEX AN IN PRESS
[2]  
Busemann H., 2008, CONVEX SURFACES
[3]   MOST CONVEX FIELDS ARE SMOOTH, BUT NOT TOO SMOOTH [J].
GRUBER, PM .
MATHEMATISCHE ANNALEN, 1977, 229 (03) :259-266
[4]  
GRUBER PM, 1993, HDB CONVEX GEOMETRY, P1327
[5]   SOME NEW RESULTS ON SMOOTHNESS AND ROTUNDITY IN NORMED LINEAR SPACES [J].
KLEE, V .
MATHEMATISCHE ANNALEN, 1959, 139 (01) :51-63
[6]   CURVATURE PROPERTIES OF TYPICAL CONVEX SURFACES [J].
ZAMFIRESCU, T .
PACIFIC JOURNAL OF MATHEMATICS, 1988, 131 (01) :191-207
[7]   NONEXISTENCE OF CURVATURE IN MOST POINTS OF MOST CONVEX SURFACES [J].
ZAMFIRESCU, T .
MATHEMATISCHE ANNALEN, 1980, 252 (03) :217-219
[8]   THE CURVATURE OF MOST CONVEX SURFACES VANISHES ALMOST EVERYWHERE [J].
ZAMFIRESCU, T .
MATHEMATISCHE ZEITSCHRIFT, 1980, 174 (02) :135-139
[9]  
Zamfirescu T., 1991, Atti Semin. Mat. Fis. Univ. Modena, V39, P139
[10]  
Zamfirescu T., 2009, MAJORITY CONVEXITY