Catalysis with Two-Dimensional Materials Confining Single Atoms: Concept, Design, and Applications

被引:872
作者
Wang, Yong [1 ,2 ]
Mao, Jun [1 ,2 ]
Meng, Xianguang [1 ]
Yu, Liang [1 ]
Deng, Dehui [1 ,2 ]
Bao, Xinhe [1 ]
机构
[1] Chinese Acad Sci, DICP, Collaborat Innovat Ctr Chem Energy Mat iChEM, State Key Lab Catalysis, Dalian 116023, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, iChEM, Xiamen 361005, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
NITROGEN-DOPED GRAPHENE; CHEMICAL-VAPOR-DEPOSITION; OXYGEN REDUCTION REACTION; GRAPHITIC CARBON NITRIDE; MOS2 ULTRATHIN NANOSHEETS; N-C CATALYST; TRANSITION-METAL DICHALCOGENIDES; EFFICIENT HYDROGEN EVOLUTION; LIQUID-PHASE HYDROGENATION; LARGE-SCALE PRODUCTION;
D O I
10.1021/acs.chemrev.8b00501
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional materials and single-atom catalysts are two frontier research fields in catalysis. A new category of catalysts with the integration of both aspects has been rapidly developed in recent years, and significant advantages were established to make it an independent research field. In this Review, we will focus on the concept of two-dimensional materials confining single atoms for catalysis. The new electronic states via the integration lead to their mutual benefits in activity, that is, two-dimensional materials with unique geometric and electronic structures can modulate the catalytic performance of the confined single atoms, and in other cases the confined single atoms can in turn affect the intrinsic activity of two-dimensional materials. Three typical two-dimensional materials are mainly involved here, i.e., graphene, g-C3N4, and MoS2, and the confined single atoms include both metal and nonmetal atoms. First, we systematically introduce and discuss the classic synthesis methods, advanced characterization techniques, and various catalytic applications toward two-dimensional materials confining single-atom catalysts. Finally, the opportunities and challenges in this emerging field are featured on the basis of its current development.
引用
收藏
页码:1806 / 1854
页数:49
相关论文
共 361 条
[31]   Single atom catalyst by atomic layer deposition technique [J].
Cheng, Niancai ;
Sun, Xueliang .
CHINESE JOURNAL OF CATALYSIS, 2017, 38 (09) :1508-1514
[32]   Platinum single-atom and cluster catalysis of the hydrogen evolution reaction [J].
Cheng, Niancai ;
Stambula, Samantha ;
Wang, Da ;
Banis, Mohammad Norouzi ;
Liu, Jian ;
Riese, Adam ;
Xiao, Biwei ;
Li, Ruying ;
Sham, Tsun-Kong ;
Liu, Li-Min ;
Botton, Gianluigi A. ;
Sun, Xueliang .
NATURE COMMUNICATIONS, 2016, 7
[33]   Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst [J].
Choi, Chang Hyuck ;
Kim, Minho ;
Kwon, Han Chang ;
Cho, Sung June ;
Yun, Seongho ;
Kim, Hee-Tak ;
Mayrhofer, Karl J. J. ;
Kim, Hyungjun ;
Choi, Minkee .
NATURE COMMUNICATIONS, 2016, 7
[34]   Gram-scale production of graphene based on solvothermal synthesis and sonication [J].
Choucair, Mohammad ;
Thordarson, Pall ;
Stride, John A. .
NATURE NANOTECHNOLOGY, 2009, 4 (01) :30-33
[35]   Negative Electrocatalytic Effects of p-Doping Niobium and Tantalum on MoS2 and WS2 for the Hydrogen Evolution Reaction and Oxygen Reduction Reaction [J].
Chua, Xing Juan ;
Luxa, Jan ;
Eng, Alex Yong Sheng ;
Tan, Shu Min ;
Sofer, Zdenek ;
Pumera, Martin .
ACS CATALYSIS, 2016, 6 (09) :5724-5734
[36]   Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials [J].
Coleman, Jonathan N. ;
Lotya, Mustafa ;
O'Neill, Arlene ;
Bergin, Shane D. ;
King, Paul J. ;
Khan, Umar ;
Young, Karen ;
Gaucher, Alexandre ;
De, Sukanta ;
Smith, Ronan J. ;
Shvets, Igor V. ;
Arora, Sunil K. ;
Stanton, George ;
Kim, Hye-Young ;
Lee, Kangho ;
Kim, Gyu Tae ;
Duesberg, Georg S. ;
Hallam, Toby ;
Boland, John J. ;
Wang, Jing Jing ;
Donegan, John F. ;
Grunlan, Jaime C. ;
Moriarty, Gregory ;
Shmeliov, Aleksey ;
Nicholls, Rebecca J. ;
Perkins, James M. ;
Grieveson, Eleanor M. ;
Theuwissen, Koenraad ;
McComb, David W. ;
Nellist, Peter D. ;
Nicolosi, Valeria .
SCIENCE, 2011, 331 (6017) :568-571
[37]   Heteroatom-doped graphene as electrocatalysts for air cathodes [J].
Cui, Huijuan ;
Zhou, Zhen ;
Jia, Dianzeng .
MATERIALS HORIZONS, 2017, 4 (01) :7-19
[38]   Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms [J].
Cui, Xiaoju ;
Li, Haobo ;
Wang, Yan ;
Hu, Yuanli ;
Hua, Lei ;
Li, Haiyang ;
Han, Xiuwen ;
Liu, Qingfei ;
Yang, Fan ;
He, Limin ;
Chen, Xiaoqi ;
Li, Qingyun ;
Xiao, Jianping ;
Deng, Dehui ;
Bao, Xinhe .
CHEM, 2018, 4 (08) :1902-1910
[39]   A Graphene Composite Material with Single Cobalt Active Sites: A Highly Efficient Counter Electrode for Dye-Sensitized Solar Cells [J].
Cui, Xiaoju ;
Xiao, Jianping ;
Wu, Yihui ;
Du, Peipei ;
Si, Rui ;
Yang, Huaixin ;
Tian, Huanfang ;
Li, Jianqi ;
Zhang, Wen-Hua ;
Deng, Dehui ;
Bao, Xinhe .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (23) :6708-6712
[40]   Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation [J].
Cui, Xiaoju ;
Ren, Pengju ;
Deng, Dehui ;
Deng, Jiao ;
Bao, Xinhe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (01) :123-129