MHD model of incompressible polymeric fluid. Linear instability of the resting state

被引:4
|
作者
Blokhin, A. M. [1 ,2 ]
Tkachev, D. L. [1 ,2 ]
机构
[1] Novosibirsk State Univ, Novosibirsk, Russia
[2] Sobolev Inst Math, Novosibirsk, Russia
基金
俄罗斯科学基金会;
关键词
Incompressible viscoelastic polymeric medium; rheological relation; magnetohydrodynamic flow; resting state; spectrum; Lyapunov's stability; FLOWS; STABILITY; ASYMPTOTICS; SPECTRUM;
D O I
10.1080/17476933.2020.1797706
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the linear stability of a resting state for a generalization of the basic rheological Pokrovski-Vinogradov model for flows of solutions and melts of an incompressible viscoelastic polymeric medium to the nonisothermal case under the influence of magnetic field. We prove that the corresponding linearized problem describing magnetohydrodynamic flows of polymers in an infinite plane channel has the following property: for certain values of the conduction current which is given on the electrodes, i.e. on the channel boundaries, the problem has solutions whose amplitude grows exponentially (in the class of functions periodic along the channel).
引用
收藏
页码:929 / 944
页数:16
相关论文
共 43 条
  • [31] Exact Analysis of Non-Linear Fractionalized Jeffrey Fluid. A Novel Approach of Atangana-Baleanu Fractional Model
    Murtaza, Saqib
    Ali, Farhad
    Aamina
    Sheikh, Nadeem Ahmad
    Khan, Ilyas
    Nisar, Kottakkaran Sooppy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2020, 65 (03): : 2033 - 2047
  • [32] Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data
    Benozzo, Danilo
    Baggio, Giacomo
    Baron, Giorgia
    Chiuso, Alessandro
    Zampieri, Sandro
    Bertoldo, Alessandra
    NETWORK NEUROSCIENCE, 2024, 8 (03): : 965 - 988
  • [33] A MULTIPOINT INITIAL-FINAL VALUE PROBLEM FOR A LINEAR MODEL OF PLANEPARALLEL THERMAL CONVECTION IN VISCOELASTIC INCOMPRESSIBLE FLUID
    Zagrebina, S. A.
    BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (03): : 5 - 22
  • [34] Mirror structures above and below the linear instability threshold: Cluster observations, fluid model and hybrid simulations
    Genot, V.
    Budnik, E.
    Hellinger, P.
    Passot, T.
    Belmont, G.
    Travnicek, P. M.
    Sulem, P-L
    Lucek, E.
    Dandouras, L.
    ANNALES GEOPHYSICAE, 2009, 27 (02) : 601 - 615
  • [35] A LINEAR TIME-DOMAIN 2-FLUID MODEL ANALYSIS OF DYNAMIC INSTABILITY IN BOILING FLOW SYSTEMS
    DYKHUIZEN, RC
    ROY, RP
    KALRA, SP
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1986, 108 (01): : 100 - 108
  • [36] The extended Gortler-Hammerlin model for linear instability of three-dimensional incompressible swept attachment-line boundary layer flow
    Theofilis, V
    Fedorov, A
    Obrist, D
    Dallmann, UC
    JOURNAL OF FLUID MECHANICS, 2003, 487 : 271 - 313
  • [37] Future instability of FLRW fluid solutions for linear equations of state p =K? with 1/3 < K < 1
    Beyer, Florian
    Marshall, Elliot
    Oliynyk, Todd A.
    PHYSICAL REVIEW D, 2023, 107 (10)
  • [38] LINEAR TIME-DOMAIN TWO-FLUID MODEL ANALYSIS OF DYNAMIC INSTABILITY IN BOILING FLOW SYSTEMS.
    Dykhuizen, R.C.
    Roy, R.P.
    Kalra, S.P.
    1600, (108):
  • [39] Linear longwave instability of a single class of steady-state jet flows of an ideal fluid in the field of a self-electric current
    Gubarev Y.G.
    Nikulin V.V.
    Fluid Dynamics, 2001, 36 (2) : 225 - 235
  • [40] Linear long-wave instability of one class of steady-state jet flows of ideal fluid in field of own electric current
    Gubarev, Yu.G.
    Nikulin, V.V.
    2001, Nauka, Moscow