A Survey of Secret Sharing Schemes Based on Latin Squares

被引:0
作者
Tso, Raylin [1 ]
Miao, Ying [2 ]
机构
[1] Natl Chengchi Univ, Dept Comp Sci, Taipei, Taiwan
[2] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki, Japan
来源
ADVANCES IN INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING, PT II | 2018年 / 82卷
关键词
Back circulant latin square; Critical sets; Multilevel scheme; Multi-department scheme; Secret sharing schemes;
D O I
10.1007/978-3-319-63859-1_33
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Secret sharing schemes are wildly used in many applications where the secret must be recovered by joint work of certain amount of participants. There are many techniques to construct a secret sharing scheme, one of them is the construction using critical sets of Latin squares. In this paper, we will investigate the features of back circulant Latin squares, their corresponding critical sets and show how a secret sharing scheme can be constructed using such kind of critical sets. Finally, we will point out the constraints and future research on such kind of secret sharing schemes.
引用
收藏
页码:267 / 272
页数:6
相关论文
共 9 条
[1]  
[Anonymous], 1982, C NUMER
[2]  
Blakley G. R., 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK), P313, DOI 10.1109/MARK.1979.8817296
[3]  
Cooper J., 1991, AUSTRALAS J COMB, V4, P113
[4]  
Cooper J.A., 1994, Bulletin of the ICA, V12, P33
[5]  
DONOVAN D, 1995, ARS COMBINATORIA, V39, P33
[6]  
DONOVAN D, 1996, AEQUATIONES MATH, V52, P157
[7]   HOW TO SHARE A SECRET [J].
SHAMIR, A .
COMMUNICATIONS OF THE ACM, 1979, 22 (11) :612-613
[8]  
Smetaniuk B., 1979, UTILITAS MATHEMATICA, V16, P97
[9]  
Street A. P., 1992, NZ J MATH, V21, P133