Microstructures and dielectric properties of (Na0.5Bi0.5)0.775Ba0.225Ti0.775Sn0.225O3 relaxor ferroelectric with Bi2O3-B2O3-ZnO glass addition

被引:11
作者
Chen, Min [1 ,2 ]
Wei, Tianchen [1 ,2 ]
Zhang, Lei [1 ,2 ]
Peng, Xin [1 ,2 ]
Guo, Xu [1 ,2 ]
Shi, Ruike [1 ,2 ]
Pu, Yongping [1 ,2 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Shaanxi, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Shaanxi Key Lab Green Preparat & Functionalizat I, Xian 710021, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
ENERGY-STORAGE PROPERTIES; IMPEDANCE SPECTROSCOPY; CERAMICS; BEHAVIOR; TITANATE; DENSITY; PERFORMANCE;
D O I
10.1007/s10854-019-01490-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To further manipulate the dielectric properties of (Na0.5Bi0.5)(0.775)Ba0.225Ti0.775Sn0.225O3 ceramics, (Na0.5Bi0.5)(0.775)Ba0.225Ti0.775Sn0.225O3-x wt% Bi2O3-B2O3-ZnO (BBZ) ceramics were prepared via a conventional solid state reaction method, whilst the effect of BBZ glass content on dielectric and ferroelectric properties was investigated. In XRD patterns, the minimal secondary phase of Zn-3(BO3)(2) can be detected in these compounds when x>5. With the addition of BBZ glass, diffuse phase transition behavior (DPT) and the high temperature stability of permittivity were enhanced. When x=7, a high permittivity of 1600 +/- 15%, from50 to475 degrees C was obtained. Additionally, a high W-d of 1.4J/cm(3) and ? of 75.5% (measured at 150kV/cm) were achieved due to the enhanced P-m of 24C/cm(2). This work demonstrated that the study on (Na0.5Bi0.5)(0.775)Ba0.225Ti0.775Sn0.225O3 ceramics with BBZ glass addition providing an adequate strategy to enhance P-m.
引用
收藏
页码:11412 / 11418
页数:7
相关论文
共 34 条
[1]   High-temperature dielectrics in CaZrO3-modified Bi1/2Na1/2TiO3-based lead-free ceramics [J].
Acosta, Matias ;
Zang, Jiadong ;
Jo, Wook ;
Roedel, Juergen .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2012, 32 (16) :4327-4334
[2]   Large electrocaloric response and high energy-storage properties over a broad temperature range in lead-free NBT-ST ceramics [J].
Cao, W. P. ;
Li, W. L. ;
Dai, X. F. ;
Zhang, T. D. ;
Sheng, J. ;
Hou, Y. F. ;
Fei, W. D. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (03) :593-600
[3]   Lead-free high-temperature dielectrics with wide operational range [J].
Dittmer, Robert ;
Jo, Wook ;
Damjanovic, Dragan ;
Roedel, Juergen .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (03)
[4]   Energy-Storage Properties of 0.89Bi0.5Na0.5TiO3-0.06BaTiO3-0.05K0.5Na0.5NbO3 Lead-Free Anti-ferroelectric Ceramics [J].
Gao, Feng ;
Dong, Xianlin ;
Mao, Chaoliang ;
Liu, Wei ;
Zhang, Hongling ;
Yang, Lihui ;
Cao, Fei ;
Wang, Genshui .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2011, 94 (12) :4382-4386
[5]   A review on the dielectric materials for high energy-storage application [J].
Hao, Xihong .
JOURNAL OF ADVANCED DIELECTRICS, 2013, 3 (01)
[6]   Dielectric and energy storage properties of BaTiO3-Bi(Mg1/2Ti1/2)O3 ceramic: Influence of glass addition and biasing electric field [J].
Hu, Qingyuan ;
Wang, Tong ;
Zhao, Luyang ;
Jin, Li ;
Xu, Zhuo ;
Wei, Xiaoyong .
CERAMICS INTERNATIONAL, 2017, 43 (01) :35-39
[7]   On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3 [J].
Jo, Wook ;
Schaab, Silke ;
Sapper, Eva ;
Schmitt, Ljubomira A. ;
Kleebe, Hans-Joachim ;
Bell, Andrew J. ;
Roedel, Juergen .
JOURNAL OF APPLIED PHYSICS, 2011, 110 (07)
[8]   Enhanced energy-storage performance and dielectric characterization of 0.94Bi0.5Na0.5TiO3-0.06BaTiO3 modified by CaZrO3 [J].
Li, Qiang ;
Wang, Ju ;
Ma, Yuan ;
Ma, Longtao ;
Dong, Guangzhi ;
Fan, Huiqing .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 663 :701-707
[9]   Novel barium titanate based capacitors with high energy density and fast discharge performance [J].
Li, Wen-Bo ;
Zhou, Di ;
Pang, Li-Xia ;
Xu, Ran ;
Guo, Huan-Huan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (37) :19607-19612
[10]   Antiferroelectrics for Energy Storage Applications: a Review [J].
Liu, Zhen ;
Lu, Teng ;
Ye, Jiaming ;
Wang, Genshui ;
Dong, Xianlin ;
Withers, Ray ;
Liu, Yun .
ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (09)