Random Attractors for the Stochastic Navier-Stokes Equations on the 2D Unit Sphere

被引:19
作者
Brzezniak, Z. [1 ]
Goldys, B. [2 ]
Le Gia, Q. T. [3 ]
机构
[1] Univ York, Dept Math, York Y010 5DD, N Yorkshire, England
[2] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Random attractors; Energy method; Asymptotically compact random dynamical systems; Stochastic Navier-Stokes; Unit sphere; REGULARITY; BEHAVIOR; MOTION;
D O I
10.1007/s00021-017-0351-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove the existence of random attractors for the Navier-Stokes equations on 2 dimensional sphere under random forcing irregular in space and time. We also deduce the existence of an invariant measure.
引用
收藏
页码:227 / 253
页数:27
相关论文
共 46 条
[11]  
Brzezniak Z., 1996, Stoch. Stoch. Rep., V56, P1
[12]   Asymptotic compactness and absorbing sets for 2D stochastic Navier- Stokes equations on some unbounded domains [J].
Brzezniak, Zdzislaw ;
Li, Yuhong .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (12) :5587-5629
[13]   The Navier-Stokes equations on the rotating 2-D sphere:: Gevrey regularity and asymptotic degrees of freedom [J].
Cao, CS ;
Rammaha, MA ;
Titi, ES .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1999, 50 (03) :341-360
[14]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[15]  
Castaing C., 1977, CONVEX ANAL MEASURAB, V580, DOI DOI 10.1007/BFB0087686
[16]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[17]  
Crauel H., 1999, Ann. Mat. Pura Appl, V176, P57, DOI [10.1007/BF02505989, DOI 10.1007/BF02505989]
[18]  
Crauel H., 1997, J DYN DIFFER EQU, V9, P307
[19]  
Crauel Hans., 2002, Random Probability Measures on Polish Spaces, V11
[20]  
Da Prato G., 2014, STOCHASTIC EQUATIONS, P152, DOI [10.1017/CBO9780511666223, 10.1017/CBO9781107295513]