Scattered data interpolation and approximation using bivariate C-1 piecewise cubic polynomials

被引:45
作者
Lai, MJ
机构
[1] Department of Mathematics, University of Georgia, Athens
关键词
bivariate splines; B-net; full approximation order; quadrangulation; scattered data interpolation;
D O I
10.1016/0167-8396(95)00007-0
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We show that if the scattered data over a polygonal domain can be quadrangulated, then the space of bivariate C-1 piecewise cubic polynomial functions on a triangulation obtained from the quadrangulation has the full approximation order. We point out that our method is more efficient than the Clough-Tocher scheme.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 16 条
[1]  
Alfeld P., 1984, Computer-Aided Geometric Design, V1, P257, DOI 10.1016/0167-8396(84)90012-8
[2]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[3]   BOUNDS FOR A CLASS OF LINEAR FUNCTIONALS WITH APPLICATIONS TO HERMITE INTERPOLATION [J].
BRAMBLE, JH ;
HILBERT, SR .
NUMERISCHE MATHEMATIK, 1971, 16 (04) :362-&
[4]   ON BIVARIATE SUPER VERTEX SPLINES [J].
CHUI, CK ;
LAI, M .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (04) :399-419
[5]  
CIARLET PG, 1974, RAIRO ANAL NUMER R, V2, P19
[6]  
de Boor C, 1987, GEOMETRIC MODELING A, P131
[7]   APPROXIMATION ORDER FROM BIVARIATE C1-CUBICS - A COUNTEREXAMPLE [J].
DEBOOR, C ;
HOLLIG, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (04) :649-655
[8]   APPROXIMATION POWER OF SMOOTH BIVARIATE PP FUNCTIONS [J].
DEBOOR, C ;
HOLLIG, K .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (03) :343-363
[9]  
Farin G., 1986, Computer-Aided Geometric Design, V3, P83, DOI 10.1016/0167-8396(86)90016-6
[10]  
GAO J, 1993, SCHEME C2 INTERPOLAT