Projective synchronization problem of a new 6D hyper-chaotic system

被引:0
作者
Li, Yanping [1 ]
Qin, Jingru [1 ]
Li, ShengZheng [1 ]
Chen, Maoxin [1 ]
Guo, Rongwei [1 ]
Dong, Zhen [2 ]
机构
[1] Shandong Acad Sci, Sch Math & Stat, Qilu Univ Technol, Jinan 250353, Peoples R China
[2] Guizhou Univ, Sch Math & Stat, Guiyang 550025, Peoples R China
来源
2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC) | 2021年
关键词
Projective synchronization; Existence; Hyper-chaotic system; Non-singular transformation; Dynamic feedback control; CONTROLLER;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we investigate the projective synchronization problem of a new 6D hyper-chaotic system. Firstly, we find a non-singular transformation by which the 6D hyper-chaotic system can be divided into two subsystems, and prove the existence of such problem. Secondly, we propose two controllers, one is the dynamic feedback controller, the other is the linear feedback controller, and then realize the projective synchronization problem of this new 6D hyper-chaotic system. Finally, numerical simulations are done to verify the correctness and effectiveness of the proposed results.
引用
收藏
页码:600 / 603
页数:4
相关论文
共 20 条
[1]   Synchronization and control of chaos in supply chain management [J].
Goksu, Alper ;
Kocamaz, Ugur Erkin ;
Uyaroglu, Yilmaz .
COMPUTERS & INDUSTRIAL ENGINEERING, 2015, 86 :107-115
[2]   Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems [J].
Guo Rong-Wei .
CHINESE PHYSICS LETTERS, 2011, 28 (04)
[3]   A simple adaptive controller for chaos and hyperchaos synchronization [J].
Guo, Rongwei .
PHYSICS LETTERS A, 2008, 372 (34) :5593-5597
[4]   Projective synchronization of a class of chaotic systems by dynamic feedback control method [J].
Guo, Rongwei .
NONLINEAR DYNAMICS, 2017, 90 (01) :53-64
[5]   Synchronization of bidirectional N-coupled fractional-order chaotic systems with ring connection based on antisymmetric structure [J].
Jiang, Cuimei ;
Zada, Akbar ;
Senel, M. Tamer ;
Li, Tongxing .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[6]   Constructing multiwing attractors from a robust chaotic system with non-hyperbolic equilibrium points [J].
Li, Chunlai ;
Hai, Wenhua .
AUTOMATIKA, 2018, 59 (02) :184-193
[7]   Amplitude control and projective synchronization of a dynamical system with exponential nonlinearity [J].
Li, Chunlai ;
Su, Kalin ;
Zhang, Jing .
APPLIED MATHEMATICAL MODELLING, 2015, 39 (18) :5392-5398
[8]   Consensus Control for Networked Manipulators With Switched Parameters and Topologies [J].
Liu, Lixia ;
Li, Bin ;
Guo, Rongwei .
IEEE ACCESS, 2021, 9 :9209-9217
[9]   A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability [J].
Mezatio, Brice Anicet ;
Motchongom, Marceline Tingue ;
Tekam, Blaise Raoul Wafo ;
Kengne, Romanic ;
Tchitnga, Robert ;
Fomethe, Anaclet .
CHAOS SOLITONS & FRACTALS, 2019, 120 :100-115
[10]   Sliding mode synchronization of fractional-order complex chaotic system with parametric and external disturbances [J].
Nian, Fuzhong ;
Liu, Xinmeng ;
Zhang, Yaqiong .
CHAOS SOLITONS & FRACTALS, 2018, 116 :22-28