One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat

被引:137
作者
Gao, LF
Jing, RL
Huo, NX
Li, Y
Li, XP
Zhou, RH
Chang, XP
Tang, JF
Ma, ZY
Jia, JZ [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Germplasm Resources, Minist Agr, Key Lab Crop Germplasm & Biotechnol, Beijing 100081, Peoples R China
[2] Heibei Agr Univ, Dept Agron, Baoding 171001, Peoples R China
[3] NW Sci Tech Univ Agr & Forestry, Yang Ling 712100, Peoples R China
关键词
D O I
10.1007/s00122-003-1554-z
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Four hundred and seventy-eight microsatellite markers derived from expressed sequence tags (EST-SSRs) were screened among three mapping populations (W-7984xOpata 85, WOpop; LumaixHanxuan, LHpop; WenmaixShanhongmai, WSpop). The number of polymorphic EST-SSR primer pairs found in WOpop, LHpop and WSpop was 92, 58 and 29 respectively. A total of 101 EST-SSR loci amplified from 88 primer sets were distributed over the 20 chromosomes of the reference maps (no markers were located on chromosome 4B). These 101 mapped EST-SSR markers add to the existing 450 microsatellite loci previously mapped in bread wheat. Seventy-four of the 101 loci showed significant similarities to known genes, including 24 genes involved in metabolism, 4 in cellular structures, 9 in stress resistance, 12 in transcription, 2 in development, 2 transporters and 21 storage proteins. Besides gliadin and glutenin, most of the 53 genes with putative functions were mapped for the first time by EST-SSR markers in bread wheat. Sequence alignment of the mapped wheat EST-SSR loci allowed tentative assignment of functionality to the other members of grasses family. Colinearity combined with homology information offers an attractive approach to comparative genomics.
引用
收藏
页码:1392 / 1400
页数:9
相关论文
共 42 条
[1]   The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants [J].
Baumann, K ;
De Paolis, A ;
Costantino, P ;
Gualberti, G .
PLANT CELL, 1999, 11 (03) :323-333
[2]   NUCLEAR-DNA AMOUNTS IN ANGIOSPERMS [J].
BENNETT, MD ;
SMITH, JB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1976, 274 (933) :227-274
[3]   GRASSES AS A SINGLE GENETIC SYSTEM - GENOME COMPOSITION, COLLINEARITY AND COMPATIBILITY [J].
BENNETZEN, JL ;
FREELING, M .
TRENDS IN GENETICS, 1993, 9 (08) :259-261
[4]  
Cardle L, 2000, GENETICS, V156, P847
[5]   The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes [J].
Chen, CY ;
Wong, EI ;
Vidali, L ;
Estavillo, A ;
Hepler, PK ;
Wu, HM ;
Cheung, AY .
PLANT CELL, 2002, 14 (09) :2175-2190
[6]   CYTOLOGICALLY BASED PHYSICAL MAPS OF THE GROUP-3 CHROMOSOMES OF WHEAT [J].
DELANEY, DE ;
NASUDA, S ;
ENDO, TR ;
GILL, BS ;
HULBERT, SH .
THEORETICAL AND APPLIED GENETICS, 1995, 91 (05) :780-782
[7]   CYTOLOGICALLY BASED PHYSICAL MAPS OF THE GROUP-2 CHROMOSOMES OF WHEAT [J].
DELANEY, DE ;
NASUDA, S ;
ENDO, TR ;
GILL, BS ;
HULBERT, SH .
THEORETICAL AND APPLIED GENETICS, 1995, 91 (04) :568-573
[8]   RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye [J].
Devos, K. M. ;
Atkinson, M. D. ;
Chinoy, C. N. ;
Liu, C. J. ;
Gale, M. D. .
THEORETICAL AND APPLIED GENETICS, 1992, 83 (08) :931-939
[9]   Comparative genetics in the grasses [J].
Gale, MD ;
Devos, KM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (05) :1971-1974
[10]   Analysis of microsatellites in major crops assessed by computational and experimental approaches [J].
Gao, LF ;
Tang, JF ;
Li, HW ;
Jia, JZ .
MOLECULAR BREEDING, 2003, 12 (03) :245-261