Asymptotic behaviour of λ-convex sets in the hyperbolic plane

被引:15
作者
Gallego, E [1 ]
Reventós, A [1 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, E-08193 Barcelona, Spain
关键词
integral geometry; hyperbolic plane; lambda-convex set;
D O I
10.1023/A:1005130211872
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the limit Area/Length for a sequence of convex sets expanding over the whole hyperbolic plane is less than or equal 1, and exactly 1 when the sets considered are convex with respect to horocycles. We consider geodesics and horocycles as particular cases of curves of constant geodesic curvature lambda with 0 less than or equal to lambda less than or equal to 1 and we study the above limit Area/Length as a function of the parameter lambda.
引用
收藏
页码:275 / 289
页数:15
相关论文
共 5 条
[1]  
Bonnesen T., 1934, THEORIE KONVEXEN KOR
[2]  
BORISENKO AA, 1997, INTEGRAL CURVATURES
[3]  
GALLEGO E, 1985, J DIFFER GEOM, V21, P63
[4]   AVERAGES FOR POLYGONS FORMED BY RANDOM LINES IN EUCLIDEAN AND HYPERBOLIC PLANES [J].
SANTALO, LA ;
YANEZ, I .
JOURNAL OF APPLIED PROBABILITY, 1972, 9 (01) :140-&
[5]  
SANTALO LA, 1976, ADDISONWESLEY ENCY M, V1