Introducing State Constraints in Optimal Control for Health Problems

被引:7
作者
Kornienko, Igor [1 ,2 ]
Paiva, Luis Tiago [1 ,2 ]
de Pinho, Maria do Rossrio [1 ,2 ]
机构
[1] Univ Porto, Fac Engn, P-4200464 Oporto, Portugal
[2] Inst Sistemas Robot, P-4200464 Oporto, Portugal
来源
CONFERENCE ON ELECTRONICS, TELECOMMUNICATIONS AND COMPUTERS - CETC 2013 | 2014年 / 17卷
关键词
Optimal control; Maximum Principle; State Constraints; SEIR Model; 2ND-ORDER SUFFICIENT CONDITIONS; TIME;
D O I
10.1016/j.protcy.2014.10.249
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An optimal control problem with state constraints based on a SEIR model to control the spreading of infectious diseases is considered. The main purpose is apply novel theoretical results to successfully validate the numerical solution, computed via direct method. The problem has simple but yet interesting features that we explore in our analysis. Of particular interest is the fact that the state constraint is of order one and that the solution is normal. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
引用
收藏
页码:415 / 422
页数:8
相关论文
共 15 条
[1]  
Biswas M.H.A., 2014, MATH BIOSCIENCES ENG, V11
[2]  
Clarke F., 2013, FUNCTIONAL ANAL CALC
[3]   A model for cancer chemotherapy with state-space constraints [J].
de Pinho, Maria do Rosario ;
Ferreira, Maria Margarida ;
Ledzewicz, Urszula ;
Schaettler, Heinz .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 63 (5-7) :E2591-E2602
[4]  
Falugi P., 2010, IMPERIAL COLL LONDON
[5]   A SURVEY OF THE MAXIMUM-PRINCIPLES FOR OPTIMAL-CONTROL PROBLEMS WITH STATE CONSTRAINTS [J].
HARTL, RF ;
SETHI, SP ;
VICKSON, RG .
SIAM REVIEW, 1995, 37 (02) :181-218
[6]   2ND-ORDER SUFFICIENT CONDITIONS FOR CONTROL-PROBLEMS WITH MIXED CONTROL-STATE CONSTRAINTS [J].
MAURER, H ;
PICKENHAIN, S .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1995, 86 (03) :649-667
[7]   Second order sufficient conditions for optimal control problems with free final time: The Riccati approach [J].
Maurer, H ;
Oberle, HJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2002, 41 (02) :380-403
[8]  
Neilan RM, 2010, DIMACS SER DISCRET M, V75, P67
[9]  
Osmolovskii N.P., 2013, SIAM Advances in Design and Control, V24
[10]  
Paiva L.T., 2013, Optimal Control in Constrained and Hybrid Nonlinear Systems, Project Report