Feature Selection Methods in the Framework of mRMR

被引:6
作者
Wang, Xiujuan [1 ]
Tao, Yuanrui [1 ]
Zheng, Kangfeng [2 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, 100 Pingleyuan, Beijing, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, 10 Xitucheng Rd, Beijing, Peoples R China
来源
2018 EIGHTH INTERNATIONAL CONFERENCE ON INSTRUMENTATION AND MEASUREMENT, COMPUTER, COMMUNICATION AND CONTROL (IMCCC 2018) | 2018年
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Feature Selection; mRMR; Machine Learning;
D O I
10.1109/IMCCC.2018.00307
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Feature selection (FS) plays an important role in machine learning. FS under minimum redundancy maximum relevance framework based on mutual information behaved well according to existing researched. This paper focus on the validity of the MM-Redundancy Max -Relevance (mRMR) framework with some traditional correlative criteria, such as Spearman coefficient, distance correlation (dCor), and maximal information coefficient (MIC), etc. Experimental results show that mRMR can bring encouraging feature selection result compared with the traditional K-BEST feature selection method, no matter which criterion is adopted and the classification accuracy of these criteria is improved under the mRMR framework.
引用
收藏
页码:1490 / 1495
页数:6
相关论文
共 12 条
  • [1] Adil BH, 2017, 2017 INTELLIGENT SYSTEMS AND COMPUTER VISION (ISCV)
  • [2] mRMR-ABC: A Hybrid Gene Selection Algorithm for Cancer Classification Using Microarray Gene Expression Profiling
    Alshamlan, Hala
    Badr, Ghada
    Alohali, Yousef
    [J]. BIOMED RESEARCH INTERNATIONAL, 2015, 2015
  • [3] [Anonymous], 2005, FEATURE SELECTION BA
  • [4] The mRMR variable selection method: a comparative study for functional data
    Berrendero, J. R.
    Cuevas, A.
    Torrecilla, J. L.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (05) : 891 - 907
  • [5] Health Monitoring of Cooling Fans Based on Mahalanobis Distance With mRMR Feature Selection
    Jin, Xiaohang
    Ma, Eden W. M.
    Cheng, L. L.
    Pecht, Michael
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (08) : 2222 - 2229
  • [6] Identification of Colorectal Cancer Related Genes with mRMR and Shortest Path in Protein-Protein Interaction Network
    Li, Bi-Qing
    Huang, Tao
    Liu, Lei
    Cai, Yu-Dong
    Chou, Kuo-Chen
    [J]. PLOS ONE, 2012, 7 (04):
  • [7] A Survey on Feature Selection
    Miao, Jianyu
    Niu, Lingfeng
    [J]. PROMOTING BUSINESS ANALYTICS AND QUANTITATIVE MANAGEMENT OF TECHNOLOGY: 4TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2016), 2016, 91 : 919 - 926
  • [8] Detecting Novel Associations in Large Data Sets
    Reshef, David N.
    Reshef, Yakir A.
    Finucane, Hilary K.
    Grossman, Sharon R.
    McVean, Gilean
    Turnbaugh, Peter J.
    Lander, Eric S.
    Mitzenmacher, Michael
    Sabeti, Pardis C.
    [J]. SCIENCE, 2011, 334 (6062) : 1518 - 1524
  • [9] Wang Tao, 2011, Frontiers in Genetics, V2, P51, DOI 10.3389/fgene.2011.00051
  • [10] Yacoub M, 1997, HVS HEURISTIC VARIAB