Paenibacillus larvae-Directed Bacteriophage HB10c2 and Its Application in American Foulbrood-Affected Honey Bee Larvae

被引:40
作者
Beims, Hannes [1 ]
Wittmann, Johannes [2 ]
Bunk, Boyke [2 ]
Sproeer, Cathrin [2 ]
Rohde, Christine [2 ]
Guenther, Gabi [1 ]
Rohde, Manfred [3 ]
von der Ohe, Werner [4 ]
Steinert, Michael [1 ,3 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Mikrobiol, D-38106 Braunschweig, Germany
[2] Leibniz Inst DSMZ German Collect Microorganisms &, Braunschweig, Germany
[3] Helmholtz Ctr Infect Res, Cent Facil Microscopy, Braunschweig, Germany
[4] Inst Apiculture, Lower Saxony State Off Consumer Protect & Food Sa, Celle, Germany
关键词
LYSIS; SEQUENCE; THERAPY; GROWTH; PHAGES;
D O I
10.1128/AEM.00804-15
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Paenibacillus larvae is the causative agent of American foulbrood (AFB), the most serious honey bee brood bacterial disease. We isolated and characterized P. larvae-directed bacteriophages and developed criteria for safe phage therapy. Whole-genome analysis of a highly lytic virus of the family Siphoviridae (HB10c2) provided a detailed safety profile and uncovered its lysogenic nature and a putative beta-lactamase-like protein. To rate its antagonistic activity against the pathogens targeted and to specify potentially harmful effects on the bee population and the environment, P. larvae genotypes ERIC I to IV, representatives of the bee gut microbiota, and a broad panel of members of the order Bacillales were analyzed for phage HB10c2-induced lysis. Breeding assays with infected bee larvae revealed that the in vitro phage activity observed was not predictive of the real-life scenario and therapeutic efficacy. On the basis of the disclosed P. larvae-bacteriophage coevolution, we discuss the future prospects of AFB phage therapy.
引用
收藏
页码:5411 / 5419
页数:9
相关论文
共 38 条
[1]  
Abedon Stephen T, 2011, Bacteriophage, V1, P66
[2]  
[Anonymous], 2013, BACTERIOPHAGE
[3]  
Aupinel Pierrick, 2005, Bulletin of Insectology, V58, P107
[4]  
Boulanger P, 2009, BACTERIOPHAGES METHO, V2
[5]   Phages and the evolution of bacterial pathogens:: From genomic rearrangements to lysogenic conversion [J].
Brüssow, H ;
Canchaya, C ;
Hardt, WD .
MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2004, 68 (03) :560-+
[6]   The generalized transducing Salmonella bacteriophage ES18:: Complete genome sequence and DNA packaging strategy [J].
Casjens, SR ;
Gilcrease, EB ;
Winn-Stapley, DA ;
Schicklmaier, P ;
Schmieger, H ;
Pedulla, ML ;
Ford, ME ;
Houtz, JM ;
Hatfull, GF ;
Hendrix, RW .
JOURNAL OF BACTERIOLOGY, 2005, 187 (03) :1091-1104
[7]  
Chan BK, 2013, FUTURE MICROBIOL, V8, P769, DOI [10.2217/fmb.13.47, 10.2217/FMB.13.47]
[8]   Updated genome assembly and annotation of Paenibacillus larvae, the agent of American foulbrood disease of honey bees [J].
Chan, Queenie W. T. ;
Cornman, R. Scott ;
Birol, Inanc ;
Liao, Nancy Y. ;
Chan, Simon K. ;
Docking, T. Roderick ;
Jackman, Shaun D. ;
Taylor, Greg A. ;
Jones, Steven J. M. ;
de Graaf, Dirk C. ;
Evans, Jay D. ;
Foster, Leonard J. .
BMC GENOMICS, 2011, 12
[9]   How to Kill the Honey Bee Larva: Genomic Potential and Virulence Mechanisms of Paenibacillus larvae [J].
Djukic, Marvin ;
Brzuszkiewicz, Elzbieta ;
Fuenfhaus, Anne ;
Voss, Joern ;
Gollnow, Kathleen ;
Poppinga, Lena ;
Liesegang, Heiko ;
Garcia-Gonzalez, Eva ;
Genersch, Elke ;
Daniel, Rolf .
PLOS ONE, 2014, 9 (03)
[10]   Reclassification of Paenibacillus larvae subsp pulvifaciens and Paenibacillus larvae subsp larvae as Paenibacillus larvae without subspecies differentiation [J].
Genersch, E ;
Forsgren, E ;
Pentikäinen, J ;
Ashiralieva, A ;
Rauch, S ;
Kilwinski, J ;
Fries, I .
INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 2006, 56 :501-511