Resolution in Linguistic Propositional Logic Based on Linear Symmetrical Hedge Algebra

被引:0
作者
Thi-Minh-Tam Nguyen [1 ]
Viet-Trung Vu [2 ]
The-Vinh Doan [2 ]
Duc-Khanh Tran [2 ]
机构
[1] Vinh Univ, Fac Informat Technol, Vinh, Vietnam
[2] Hanoi Univ Sci & Technol, Sch Informat & Commun Technol, Hanoi, Vietnam
来源
KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2013), VOL 1 | 2014年 / 244卷
关键词
LATTICE-VALUED LOGIC; PRINCIPLE; LP(X);
D O I
10.1007/978-3-319-02741-8_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The paper introduces a propositional linguistic logic that serves as the basis for automated uncertain reasoning with linguistic information. First, we build a linguistic logic system with truth value domain based on a linear symmetrical hedge algebra. Then, we consider Godel's t-norm and t-conorm to define the logical connectives for our logic. Next, we present a resolution inference rule, in which two clauses having contradictory linguistic truth values can be resolved. We also give the concept of reliability in order to capture the approximative nature of the resolution inference rule. Finally, we propose a resolution procedure with the maximal reliability.
引用
收藏
页码:327 / 338
页数:12
相关论文
共 19 条
[1]  
[Anonymous], FUZZY SETS SYST
[2]   Fuzzy logic programming [J].
Ebrahim, R .
FUZZY SETS AND SYSTEMS, 2001, 117 (02) :215-230
[3]   On α-satisfiability and its α-lock resolution in a finite lattice-valued propositional logic [J].
He, Xingxing ;
Liu, Jun ;
Xu, Yang ;
Martinez, Luis ;
Ruan, Da .
LOGIC JOURNAL OF THE IGPL, 2012, 20 (03) :579-588
[4]   Linguistic truth-valued lattice-valued propositional logic system lP(X) based on linguistic truth-valued lattice implication algebra [J].
Lai, Jiajun ;
Xu, Yang .
INFORMATION SCIENCES, 2010, 180 (10) :1990-2002
[5]  
Phuong LA, 2012, 2012 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY2012), P82, DOI 10.1109/iFUZZY.2012.6409680
[6]  
Phuong LA, 2012, 2012 2ND INTERNATIONAL CONFERENCE ON UNCERTAINTY REASONING AND KNOWLEDGE ENGINEERING (URKE), P137, DOI 10.1109/URKE.2012.6319528
[7]   Fuzzy linguistic logic programming and its applications [J].
Le, Van Hung ;
Liu, Fei ;
Tran, Dinh Khang .
THEORY AND PRACTICE OF LOGIC PROGRAMMING, 2009, 9 :309-341
[8]  
Lee R. C. T., 1971, IJCAI, P560
[9]  
Mondal B., 2012, 2012 ANN M N AM FUZZ, P1
[10]  
Mukaidono M., 1989, P 18 INT S MULT VAL, P210