CoRAL: predicting non-coding RNAs from small RNA-sequencing data

被引:20
作者
Leung, Yuk Yee [1 ,2 ]
Ryvkin, Paul [2 ,3 ]
Ungar, Lyle H. [2 ,3 ,4 ]
Gregory, Brian D. [3 ,5 ,6 ]
Wang, Li-San [1 ,2 ,3 ,5 ,7 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Penn Ctr Bioinformat, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, Penn Genome Frontiers Inst, Philadelphia, PA 19104 USA
[6] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[7] Univ Penn, Perelman Sch Med, Inst Aging, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
INTEGRATIVE ANNOTATION; REVEALS; CLASSIFICATION; EXPRESSION; MICRORNAS; GENES;
D O I
10.1093/nar/gkt426
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The surprising observation that virtually the entire human genome is transcribed means we know little about the function of many emerging classes of RNAs, except their astounding diversities. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their abilities to classify the various collections of non-coding RNAs (ncRNAs). To address this, we developed Classification of RNAs by Analysis of Length (CoRAL), a machine learning-based approach for classification of RNA molecules. CoRAL uses biologically interpretable features including fragment length and cleavage specificity to distinguish between different ncRNA populations. We evaluated CoRAL using genome-wide small RNA sequencing data sets from four human tissue types and were able to classify six different types of RNAs with similar to 80% cross-validation accuracy. Analysis by CoRAL revealed that microRNAs, small nucleolar and transposon-derived RNAs are highly discernible and consistent across all human tissue types assessed, whereas long intergenic ncRNAs, small cytoplasmic RNAs and small nuclear RNAs show less consistent patterns. The ability to reliably annotate loci across tissue types demonstrates the potential of CoRAL to characterize ncRNAs using small RNA sequencing data in less well-characterized organisms.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Prediction of Long Non-Coding RNAs Based on RNA-Seq
    Sun Lei
    Zhang Lin
    Liu Hui
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2012, 39 (12) : 1156 - 1166
  • [42] Circular RNAs: an emerging type of non-coding RNA and their potential implications in bladder cancer
    Cimmino, Amelia
    Costa, Valerio
    Terracciano, Daniela
    Ferro, Matteo
    TRANSLATIONAL CANCER RESEARCH, 2018, 7 : S758 - S761
  • [43] Regulatory non-coding RNAs: revolutionizing the RNA world
    Huang, Biao
    Zhang, Rongxin
    MOLECULAR BIOLOGY REPORTS, 2014, 41 (06) : 3915 - 3923
  • [44] New epigenetic players in stroke pathogenesis: From non-coding RNAs to exosomal non-coding RNAs
    Mahjoubin-Tehran, Maryam
    Rezaei, Samaneh
    Jesmani, Amin
    Birang, Nafise
    Morshedi, Korosh
    Khanbabaei, Hashem
    Khan, Haroon
    Piranviseh, Ashkan
    Nejati, Majid
    Aschner, Michael
    Mirzaei, Hamed
    BIOMEDICINE & PHARMACOTHERAPY, 2021, 140
  • [45] Small non-coding RNA deregulation in endometrial carcinogenesis
    Ravo, Maria
    Cordella, Angela
    Rinaldi, Antonio
    Bruno, Giuseppina
    Alexandrova, Elena
    Saggese, Pasquale
    Nassa, Giovanni
    Giurato, Giorgio
    Tarallo, Roberta
    Marchese, Giovanna
    Rizzo, Francesca
    Stellato, Claudia
    Biancardi, Rossella
    Troisi, Jacopo
    Sardo, Attilio Di Spiezio
    Zullo, Fulvio
    Weisz, Alessandro
    Guida, Maurizio
    ONCOTARGET, 2015, 6 (07) : 4677 - 4691
  • [46] The essential roles of small non-coding RNAs and RNA modifications in normal and malignant hematopoiesis
    Cai, Xinyi
    Wang, Hui
    Han, Yingli
    Huang, He
    Qian, Pengxu
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [47] Fluorogenic RNA Mango aptamers for imaging small non-coding RNAs in mammalian cells
    Autour, Alexis
    Jeng, Sunny C. Y.
    Cawte, Adam D.
    Abdolahzadeh, Amir
    Galli, Angela
    Panchapakesan, Shanker S. S.
    Rueda, David
    Ryckelynck, Michael
    Unrau, Peter J.
    NATURE COMMUNICATIONS, 2018, 9
  • [48] Identification of Potential Key Long Non-Coding RNAs and Target Genes Associated with Pneumonia Using Long Non-Coding RNA Sequencing (lncRNA-Seq): A Preliminary Study
    Huang, Sai
    Feng, Cong
    Chen, Li
    Huang, Zhi
    Zhou, Xuan
    Li, Bei
    Wang, Li-li
    Chen, Wei
    Lv, Fa-qin
    Li, Tan-shi
    MEDICAL SCIENCE MONITOR, 2016, 22 : 3394 - 3408
  • [49] An Introduction to Small Non-coding RNAs: miRNA and snoRNA
    Christopher L. Holley
    Veli K. Topkara
    Cardiovascular Drugs and Therapy, 2011, 25
  • [50] Long non-coding RNAs in cancer
    Gong ZhaoJian
    Zhang ShanShan
    Zhang WenLing
    Huang HongBin
    Li Qiao
    Deng Hao
    Ma Jian
    Zhou Ming
    Xiang JuanJuan
    Wu MingHua
    Li XiaYu
    Xiong Wei
    Li XiaoLing
    Li Yong
    Zeng ZhaoYang
    Li GuiYuan
    SCIENCE CHINA-LIFE SCIENCES, 2012, 55 (12) : 1120 - 1124