CoRAL: predicting non-coding RNAs from small RNA-sequencing data

被引:20
作者
Leung, Yuk Yee [1 ,2 ]
Ryvkin, Paul [2 ,3 ]
Ungar, Lyle H. [2 ,3 ,4 ]
Gregory, Brian D. [3 ,5 ,6 ]
Wang, Li-San [1 ,2 ,3 ,5 ,7 ]
机构
[1] Univ Penn, Perelman Sch Med, Dept Pathol & Lab Med, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Penn Ctr Bioinformat, Philadelphia, PA 19104 USA
[3] Univ Penn, Perelman Sch Med, Genom & Computat Biol Grad Grp, Philadelphia, PA 19104 USA
[4] Univ Penn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[5] Univ Penn, Perelman Sch Med, Penn Genome Frontiers Inst, Philadelphia, PA 19104 USA
[6] Univ Penn, Dept Biol, Philadelphia, PA 19104 USA
[7] Univ Penn, Perelman Sch Med, Inst Aging, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
INTEGRATIVE ANNOTATION; REVEALS; CLASSIFICATION; EXPRESSION; MICRORNAS; GENES;
D O I
10.1093/nar/gkt426
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The surprising observation that virtually the entire human genome is transcribed means we know little about the function of many emerging classes of RNAs, except their astounding diversities. Traditional RNA function prediction methods rely on sequence or alignment information, which are limited in their abilities to classify the various collections of non-coding RNAs (ncRNAs). To address this, we developed Classification of RNAs by Analysis of Length (CoRAL), a machine learning-based approach for classification of RNA molecules. CoRAL uses biologically interpretable features including fragment length and cleavage specificity to distinguish between different ncRNA populations. We evaluated CoRAL using genome-wide small RNA sequencing data sets from four human tissue types and were able to classify six different types of RNAs with similar to 80% cross-validation accuracy. Analysis by CoRAL revealed that microRNAs, small nucleolar and transposon-derived RNAs are highly discernible and consistent across all human tissue types assessed, whereas long intergenic ncRNAs, small cytoplasmic RNAs and small nuclear RNAs show less consistent patterns. The ability to reliably annotate loci across tissue types demonstrates the potential of CoRAL to characterize ncRNAs using small RNA sequencing data in less well-characterized organisms.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Small Non-coding RNAs in Embryonic Pre-implantation
    Nazarian, Hamid
    Novin, Marefat Ghaffari
    Khaleghi, Sara
    Habibi, Bahare
    CURRENT MOLECULAR MEDICINE, 2022, 22 (04) : 287 - 299
  • [32] Small Non-coding RNAs Govern Mammary Gland Tumorigenesis
    Yu, Zuoren
    Pestell, Richard G.
    JOURNAL OF MAMMARY GLAND BIOLOGY AND NEOPLASIA, 2012, 17 (01) : 59 - 64
  • [33] Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma
    Rahimian, Neda
    Sheida, Amirhossein
    Rajabi, Mohammadreza
    Heidari, Mohammad Mahdi
    Tobeiha, Mohammad
    Esfahani, Pegah Veradi
    Asouri, Sahar Ahmadi
    Hamblin, Michael R.
    Mohamadzadeh, Omid
    Motamedzadeh, Alireza
    Mahabady, Mahmood Khaksary
    PATHOLOGY RESEARCH AND PRACTICE, 2023, 248
  • [34] Identification of small non-coding RNAs in the planarian Dugesia japonica via deep sequencing
    Qin, Yun-Fei
    Zhao, Jin-Mei
    Bao, Zhen-Xia
    Zhu, Zhao-Yu
    Mai, Jia
    Huang, Yi-Bo
    Li, Jian-Biao
    Chen, Ge
    Lu, Ping
    Chen, San-Jun
    Su, Lin-Lin
    Fang, Hui-Min
    Lu, Ji-Ke
    Zhang, Yi-Zhe
    Zhang, Shou-Tao
    GENOMICS, 2012, 99 (05) : 315 - 321
  • [35] Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions
    Omid Mohamadzadeh
    Mahsasadat Hajinouri
    Farzaneh Moammer
    Seyed Saeed Tamehri Zadeh
    Ghoncheh Omid Shafiei
    Ameneh Jafari
    Amirreza Ostadian
    Sayyed Alireza Talaei Zavareh
    Michael R. Hamblin
    Arezoo Jafarian Yazdi
    Amirhossein Sheida
    Hamed Mirzaei
    Molecular Neurobiology, 2023, 60 : 4064 - 4083
  • [36] Non-coding RNAs: Meet thy masters
    Costa, Fabricio F.
    BIOESSAYS, 2010, 32 (07) : 599 - 608
  • [37] Non-coding RNAs and Exosomal Non-coding RNAs in Traumatic Brain Injury: the Small Player with Big Actions
    Mohamadzadeh, Omid
    Hajinouri, Mahsasadat
    Moammer, Farzaneh
    Zadeh, Seyed Saeed Tamehri
    Shafiei, Ghoncheh Omid
    Jafari, Ameneh
    Ostadian, Amirreza
    Zavareh, Sayyed Alireza Talaei
    Hamblin, Michael R.
    Yazdi, Arezoo Jafarian
    Sheida, Amirhossein
    Mirzaei, Hamed
    MOLECULAR NEUROBIOLOGY, 2023, 60 (07) : 4064 - 4083
  • [38] Identification of key genes and long non-coding RNAs in celecoxib-treated lung squamous cell carcinoma cell line by RNA-sequencing
    Li, Gang
    Wang, Xuehai
    Luo, Qingsong
    Gan, Chongzhi
    MOLECULAR MEDICINE REPORTS, 2018, 17 (05) : 6456 - 6464
  • [39] NERD-seq: a novel approach of Nanopore direct RNA sequencing that expands representation of non-coding RNAs
    Saville, Luke
    Wu, Li
    Habtewold, Jemaneh
    Cheng, Yubo
    Gollen, Babita
    Mitchell, Liam
    Stuart-Edwards, Matthew
    Haight, Travis
    Mohajerani, Majid
    Zovoilis, Athanasios
    GENOME BIOLOGY, 2024, 25 (01):
  • [40] RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening
    Zhu, Benzhong
    Yang, Yongfang
    Li, Ran
    Fu, Daqi
    Wen, Liwei
    Luo, Yunbo
    Zhu, Hongliang
    JOURNAL OF EXPERIMENTAL BOTANY, 2015, 66 (15) : 4483 - 4495