A study of higher-order discontinuous Galerkin and quadratic least-squares stabilized finite element computations for acoustics

被引:11
作者
Harari, I [1 ]
Tezaur, R
Farhat, C
机构
[1] Tel Aviv Univ, Dept Solid Mech Mat & Syst, IL-69978 Tel Aviv, Israel
[2] Stanford Univ, Dept Mech Engn, Stanford, CA 94305 USA
[3] Stanford Univ, Inst Computat & Math Engn, Stanford, CA 94305 USA
关键词
Helmholtz equation; finite elements; stabilized methods; discontinuous Galerkin;
D O I
10.1142/S0218396X06002792
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
One-dimensional analyses provide novel definitions of the Galerkin/least-squares stability parameter for quadratic interpolation. A new approach to the dispersion analysis of the Lagrange multiplier approximation in discontinuous Galerkin methods is presented. A series of computations comparing the performance of Q(2) Galerkin and GLS methods with Q-8-2 DGM on large-scale problems shows superior DGM results on analogous meshes, both structured and unstructured. The degradation of the Q(2) GLS stabilization on unstructured meshes may be a consequence of inadequate one-dimensional analysis used to derive the stability parameter.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 51 条