Structure and Stability of Steady State Bifurcation in a Cannibalism Model with Cross-Diffusion

被引:0
作者
Chen, Meijun [1 ]
Fu, Shengmao [1 ]
机构
[1] Northwest Normal Univ, Coll Math & Stat, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
PREY-PREDATOR SYSTEM; CHEMOTAXIS MODEL; MIXTURES; DYNAMICS; SELF;
D O I
10.1155/2020/2969713
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper deals with spatial patterns of a predator-prey crossdiffusion model with cannibalism. By applying the asymptotic analysis and Rabinowitz bifurcation theorem, we consider the local structure of steady state to the model and determine an explicit formula of the nonconstant steady state. Furthermore, the criteria of the stability/instability for the steady state with small amplitude are established.
引用
收藏
页数:13
相关论文
共 38 条
[1]   INTERACTING FLOWS IN LIQUID DIFFUSION - EQUATIONS FOR EVALUATION OF THE DIFFUSION COEFFICIENTS FROM MOMENTS OF THE REFRACTIVE INDEX GRADIENT CURVES [J].
BALDWIN, RL ;
DUNLOP, PJ ;
GOSTING, LJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1955, 77 (20) :5235-5238
[2]  
Basheer A. A., 2017, COMPLEXITY, V2017, P15, DOI 10.1155/2017/38964122-s2.0-85029414601
[3]   Prey cannibalism alters the dynamics of Holling-Tanner-type predator-prey models [J].
Basheer, Aladeen ;
Quansah, Emmanuel ;
Bhowmick, Suman ;
Parshad, Rana D. .
NONLINEAR DYNAMICS, 2016, 85 (04) :2549-2567
[4]   Global weak solutions for coupled transport processes in concrete walls at high temperatures [J].
Benes, Michal ;
Stefan, Radek .
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2013, 93 (04) :233-251
[5]   Analysis of coupled transport phenomena in concrete at elevated temperatures [J].
Benes, Michal ;
Stefan, Radek ;
Zeman, Jan .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (13) :7262-7274
[6]   Effect of prey growth and predator cannibalism rate on the stability of a structured population model [J].
Buonomo, B. ;
Lacitignola, D. ;
Rionero, S. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (02) :1170-1181
[7]  
CHEN L, 2019, Z ANGEW MATH PHYS, V70, DOI DOI 10.1007/S00033-019-1170-72-S2.0-85069197718
[8]   Multiple bifurcations in triple convection with non-ideal boundary conditions [J].
Cox, SM ;
Moroz, IM .
PHYSICA D, 1996, 93 (1-2) :1-22
[9]  
Crandall M. G., 1971, J. Functional Analysis, V8, P321, DOI 10.1016/0022-1236(71)90015-2
[10]  
CRANDALL MG, 1973, ARCH RATION MECH AN, V52, P161, DOI 10.1007/BF00282325