Compact and indexed representation for LiDAR point clouds

被引:1
作者
Ladra, Susana [1 ]
Luaces, Miguel R. [1 ]
Parama, Jose R. [1 ]
Silva-Coira, Fernando [1 ]
机构
[1] Univ A Coruna, Fac Informat, CITIC, Coruna, Spain
来源
GEO-SPATIAL INFORMATION SCIENCE | 2024年 / 27卷 / 04期
关键词
3D point clouds; lossless compression; indexing; COMPRESSION; QUADTREE;
D O I
10.1080/10095020.2022.2121664
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them, and adding additional attributes to each point such as color, position, time, etc. LiDAR datasets are usually large, and compressed data formats (e.g. LAZ) have been proposed over the years. These formats are capable of transparently decompressing portions of the data, but they are not focused on solving general queries over the data. In contrast to that traditional approach, a new recent research line focuses on designing data structures that combine compression and indexation, allowing directly querying the compressed data. Compression is used to fit the data structure in main memory all the time, thus getting rid of disk accesses, and indexation is used to query the compressed data as fast as querying the uncompressed data. In this paper, we present the first data structure capable of losslessly compressing point clouds that have attributes and jointly indexing all three dimensions of space and attribute values. Our method is able to run range queries and attribute queries up to 100 times faster than previous methods.
引用
收藏
页码:1035 / 1070
页数:36
相关论文
共 50 条
[41]   Characterizing the Geometric Complexity of G-PCC Compressed Point Clouds [J].
Gallina, Annalisa ;
Amirpour, Hadi ;
Baldoni, Sara ;
Valenzise, Giuseppe ;
Banisti, Federica .
2024 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING, VCIP, 2024,
[42]   An Advanced LiDAR Point Cloud Sequence Coding Scheme for Autonomous Driving [J].
Sun, Xuebin ;
Wang, Sukai ;
Wang, Miaohui ;
Cheng, Shing Shin ;
Liu, Ming .
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, :2793-2801
[43]   Geometry-Aware Graph Transforms for Light Field Compact Representation [J].
Rizkallah, Mira ;
Su, Xin ;
Maugey, Thomas ;
Guillemot, Christine .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :602-616
[44]   Delta-K2-tree for Compact Representation of Web Graphs [J].
Zhang, Yu ;
Xiong, Gang ;
Liu, Yanbing ;
Liu, Mengya ;
Liu, Ping ;
Guo, Li .
WEB TECHNOLOGIES AND APPLICATIONS, APWEB 2014, 2014, 8709 :270-281
[45]   Scalable and Compact Representation for Motion Capture Data Using Tensor Decomposition [J].
Hou, Junhui ;
Chau, Lap-Pui ;
Magnenat-Thalmann, Nadia ;
He, Ying .
IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) :255-259
[46]   LOW-RANK BASED COMPACT REPRESENTATION OF MOTION CAPTURE DATA [J].
Hou, Junhui ;
Chau, Lap-Pui ;
He, Ying ;
Magnenat-Thalmann, Nadia .
2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, :1480-1484
[47]   A compact representation for trips over networks built on self-indexes [J].
Brisaboa, Nieves R. ;
Farina, Antonio ;
Galaktionov, Daniil ;
Andrea Rodriguez, M. .
INFORMATION SYSTEMS, 2018, 78 :1-22
[48]   Automobile indexation from 3D point clouds of urban scenarios [J].
Alfonso, Ramirez-Pedraza ;
Jose-Joel, Gonzalez-Barbosa ;
Raymundo, Ramirez-Pedraza ;
Erick-Alejandro, Gonzalez-Barbosa ;
Juan-Bautista, Hurtado-Ramos .
AUTOMATIKA, 2021, 62 (03) :311-318
[49]   Explorations on 3D point clouds coding using transformers and patches [J].
Marques, Miguel ;
Cruz, Luis A. da Silva .
2022 10TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP), 2022,
[50]   REGION ADAPTIVE GRAPH FOURIER TRANSFORM FOR 3D POINT CLOUDS [J].
Pavez, Eduardo ;
Girault, Benjamin ;
Ortega, Antonio ;
Chou, Philip A. .
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, :2726-2730