Compact and indexed representation for LiDAR point clouds

被引:0
|
作者
Ladra, Susana [1 ]
Luaces, Miguel R. [1 ]
Parama, Jose R. [1 ]
Silva-Coira, Fernando [1 ]
机构
[1] Univ A Coruna, Fac Informat, CITIC, Coruna, Spain
来源
GEO-SPATIAL INFORMATION SCIENCE | 2024年 / 27卷 / 04期
关键词
3D point clouds; lossless compression; indexing; COMPRESSION; QUADTREE;
D O I
10.1080/10095020.2022.2121664
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them, and adding additional attributes to each point such as color, position, time, etc. LiDAR datasets are usually large, and compressed data formats (e.g. LAZ) have been proposed over the years. These formats are capable of transparently decompressing portions of the data, but they are not focused on solving general queries over the data. In contrast to that traditional approach, a new recent research line focuses on designing data structures that combine compression and indexation, allowing directly querying the compressed data. Compression is used to fit the data structure in main memory all the time, thus getting rid of disk accesses, and indexation is used to query the compressed data as fast as querying the uncompressed data. In this paper, we present the first data structure capable of losslessly compressing point clouds that have attributes and jointly indexing all three dimensions of space and attribute values. Our method is able to run range queries and attribute queries up to 100 times faster than previous methods.
引用
收藏
页码:1035 / 1070
页数:36
相关论文
共 50 条
  • [1] From aerial LiDAR point clouds to multiscale urban representation levels by a parametric resampling
    Romanengo, Chiara
    Falcidieno, Bianca
    Biasotti, Silvia
    COMPUTERS & GRAPHICS-UK, 2024, 123
  • [2] Instance Segmentation of LiDAR Point Clouds
    Zhang, Feihu
    Guan, Chenye
    Fang, Jin
    Bai, Song
    Yang, Ruigang
    Torr, Philip H. S.
    Prisacariu, Victor
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 9448 - 9455
  • [3] CLASSIFICATION OF MULTISPECTRAL LIDAR POINT CLOUDS
    Ekhtari, Nima
    Glennie, Craig
    Fernandez-Diaz, Juan Carlos
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2756 - 2759
  • [4] Positioning and perception in LIDAR point clouds
    Benedek, Csaba
    Majdik, Andras
    Nagy, Balazs
    Rozsa, Zoltan
    Sziranyi, Tamas
    DIGITAL SIGNAL PROCESSING, 2021, 119
  • [5] Comparing Lidar and Photogrammetric Point Clouds
    Schwind, Michael
    GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2018, 32 (01): : 25 - 27
  • [6] Ribbons - A representation for point clouds
    Runions, Adam
    Samavati, Faramarz
    Prusinkiewicz, Przemyslaw
    VISUAL COMPUTER, 2007, 23 (9-11): : 945 - 954
  • [7] RibbonsA representation for point clouds
    Adam Runions
    Faramarz Samavati
    Przemyslaw Prusinkiewicz
    The Visual Computer, 2007, 23 : 945 - 954
  • [8] Surface Representation for Point Clouds
    Ran, Haoxi
    Liu, Jun
    Wang, Chengjie
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 18920 - 18930
  • [9] Point Density Variations in Airborne Lidar Point Clouds
    Petras, Vaclav
    Petrasova, Anna
    McCarter, James B.
    Mitasova, Helena
    Meentemeyer, Ross K.
    SENSORS, 2023, 23 (03)
  • [10] A Realism Metric for Generated LiDAR Point Clouds
    Larissa T. Triess
    Christoph B. Rist
    David Peter
    J. Marius Zöllner
    International Journal of Computer Vision, 2022, 130 : 2962 - 2979