On Fredholm index in Banach spaces

被引:7
作者
Ambrozie, CG [1 ]
机构
[1] ROMANIAN ACAD,INST MATH,RO-70700 BUCHAREST,ROMANIA
关键词
D O I
10.1007/BF01192040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the stability of the index of a Fredholm complex of Banach spaces under those compact perturbations which are uniform limits of finite-rank operators (Theorem 3.3). This result is a consequence of some similar statements (Theorems 3.1 and 3.2) concerning more general objects, namely the Fredholm pairs (Definition 1.1).
引用
收藏
页码:1 / 34
页数:34
相关论文
共 16 条
[1]   STABILITY OF THE INDEX OF A SEMI-FREDHOLM COMPLEX OF BANACH-SPACES [J].
ALBRECHT, E ;
VASILESCU, FH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 66 (02) :141-172
[2]  
ALBRECHT E, 1983, ADV APPL, V11
[3]  
[Anonymous], 1948, T I MAT AKAD NAUK UK
[4]   MAPPINGS BETWEEN FUNCTION SPACES [J].
BARTLE, RG ;
GRAVES, LM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAY) :400-413
[5]  
Kato T., 1976, Grundlehren der Mathematischen Wissenschaften, V132
[6]   CONTINUOUS SELECTIONS .1. [J].
MICHAEL, E .
ANNALS OF MATHEMATICS, 1956, 63 (02) :361-382
[7]  
PUTINAR M, 1982, J OPERAT THEOR, V8, P65
[8]  
SBURLAN S, 1983, TOPOLOGICAL DEGREE
[9]  
TAYLOR J. L., 1970, Journal of Functional Analysis, V6, P172, DOI 10.1016/0022-1236(70)90055-8
[10]   THE STABILITY OF THE EULER CHARACTERISTIC FOR HILBERT COMPLEXES [J].
VASILESCU, FH .
MATHEMATISCHE ANNALEN, 1980, 248 (02) :109-116