STABILIZATION OF SOLUTIONS TO HIGHER-ORDER NONLINEAR SCHRODINGER EQUATION WITH LOCALIZED DAMPING

被引:0
作者
Bisognin, Eleni [1 ]
Bisognin, Vanilde [1 ]
Vera Villagran, Octavio Paulo [2 ]
机构
[1] Ctr Univ Franciscano UNIFRA, BR-97010032 Santa Maria, RS, Brazil
[2] Univ Bio Bio, Dept Matemat, Concepcion, Chile
关键词
Higher order nonlinear Schrodinger equation; stabilization; localized damping;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the stabilization of solutions to higher-order nonlinear Schrodinger equations in a bounded interval under the effect of a localized damping mechanism. We use multiplier techniques to obtain exponential decay in time of the solutions of the linear and nonlinear equations.
引用
收藏
页数:18
相关论文
共 35 条
[1]   SHARP SUFFICIENT CONDITIONS FOR THE OBSERVATION, CONTROL, AND STABILIZATION OF WAVES FROM THE BOUNDARY [J].
BARDOS, C ;
LEBEAU, G ;
RAUCH, J .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (05) :1024-1065
[2]  
Bisognin V., 2006, Turk. J. Math., V30, P1
[3]   SOLUTIONS OF KORTEWEG-DEVRIES EQUATION IN FRACTIONAL ORDER SOBOLEV SPACES [J].
BONA, J ;
SCOTT, R .
DUKE MATHEMATICAL JOURNAL, 1976, 43 (01) :87-99
[4]  
Carvajal X., 2004, EJDE, V13, P1
[5]  
Carvajal X., 2003, DIFFERENTIAL INTEGRA, V9, P1111
[6]  
Cohen A., 1991, DUKE MATH J, V45, P149
[7]  
Dafermos C., 1968, ARCH RATIONAL MECH A, V22, P241
[9]  
Kato T., 1983, STUDIES APPL MATH S, V8, P93
[10]   NONLINEAR PULSE-PROPAGATION IN A MONOMODE DIELECTRIC GUIDE [J].
KODAMA, Y ;
HASEGAWA, A .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1987, 23 (05) :510-524