High-Performance Li(Li0.18Ni0.15Co0.15Mn0.52)O2@Li4M5O12 Heterostructured Cathode Material Coated with a Lithium Borate Oxide Glass Layer

被引:81
作者
Bian, Xiaofei [1 ]
Fu, Qiang [1 ]
Qiu, Hailong [1 ]
Du, Fei [1 ]
Gao, Yu [1 ]
Zhang, Lijie [1 ]
Zou, Bo [2 ]
Chen, Gang [1 ,2 ]
Wei, Yingjin [1 ]
机构
[1] Jilin Univ, Coll Phys, Minist Educ, Key Lab Phys & Technol Adv Batteries, Changchun 130012, Peoples R China
[2] Jilin Univ, State Key Lab Superhard Mat, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL PERFORMANCE; RECHARGEABLE BATTERIES; SURFACE MODIFICATION; LATTICE-VIBRATIONS; RATE CAPABILITY; ION BATTERIES; CO ELECTRODES; LI; CAPACITY; MN;
D O I
10.1021/acs.chemmater.5b02331
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The continuous phase transformation to spinel LiMn2O4 seriously hinders the electrochemical properties of Li-excess layered oxides in lithium ion batteries. Herein, we prepared a heterostructured Li-excess layered cathode material consisting of a Li(Li0.18Ni0.15Co0.15Mn0.52)O-2 active material in conjunction with a surface Li4M5O12 spinel and a Li2O-LiBO2-Li3BO3 glass coating layer. The material showed improved electrochemical kinetic properties with respect to its pristine counterpart because the Li2O-LiBO2-Li3BO3 glass layer not only improved the ionic conductivity of the material but also depressed the side reactions of the electrode with the electrolyte. In addition, the surface Li4M5O12 spinel constantly grew inward the bulk of the material during long-term charge discharge cycling instead of the conventional LiMn2O4 transformation for the pristine Li(Li0.18Ni0.15Co0.15Mn0.52)O-2. As a result, the heterostructured cathode material showed overall improved electrochemical performance. An initial discharge capacity of 258.8 mAh g(-1) was obtained at the 0.2 C rate with remarkable capacity retention of 92.2% after 100 cycles. Moreover, the material showed excellent rate capacity delivering a high discharge capacity of 130.4 mAh g(-1) and 100.4 mAh g(-1) at the 10 and 20 C rates, respectively. Differential scanning calorirnetry showed that the exothermic temperature of the fully charged electrode was elevated to 324.2 degrees C with little thermal release of 232.5 J g(-1), demonstrating good thermal safety of the material.
引用
收藏
页码:5745 / 5754
页数:10
相关论文
共 39 条
[1]   New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses [J].
Afyon, Semih ;
Krumeich, Frank ;
Mensing, Christian ;
Borgschulte, Andreas ;
Nesper, Reinhard .
SCIENTIFIC REPORTS, 2014, 4
[2]   Improved Electrochemical Performance and Thermal Stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 Cathode Material by Li3PO4 Surface Coating [J].
Bian, Xiaofei ;
Fu, Qiang ;
Bie, Xiaofei ;
Yang, Peilei ;
Qiu, Hailong ;
Pang, Qiang ;
Chen, Gang ;
Du, Fei ;
Wei, Yingjin .
ELECTROCHIMICA ACTA, 2015, 174 :875-884
[3]   Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy [J].
Boulineau, Adrien ;
Simonin, Loic ;
Colin, Jean-Francois ;
Canevet, Emmanuel ;
Daniel, Lise ;
Patoux, Sebastien .
CHEMISTRY OF MATERIALS, 2012, 24 (18) :3558-3566
[4]   Countering the Voltage Decay in High Capacity xLi2MnO3•(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries [J].
Croy, Jason R. ;
Kim, Donghan ;
Balasubramanian, Mahalingam ;
Gallagher, Kevin ;
Kang, Sun-Ho ;
Thackeray, Michael M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (06) :A781-A790
[5]   Electrochemical performance and thermal stability of Li1.18Co0.15Ni0.15Mn0.52O2 surface coated with the ionic conductor Li3VO4 [J].
Fu, Qiang ;
Du, Fei ;
Bian, Xiaofei ;
Wang, Yuhui ;
Yan, Xiao ;
Zhang, Yongquan ;
Zhu, Kai ;
Chen, Gang ;
Wang, Chunzhong ;
Wei, Yingjin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (20) :7555-7562
[6]   Nanoscale Phase Separation, Cation Ordering, and Surface Chemistry in Pristine Li1.2Ni0.2Mn0.6O2 for Li-Ion Batteries [J].
Gu, Meng ;
Genc, Arda ;
Belharouak, Ilias ;
Wang, Dapeng ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
CHEMISTRY OF MATERIALS, 2013, 25 (11) :2319-2326
[7]   Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries [J].
Gu, Meng ;
Belharouak, Ilias ;
Zheng, Jianming ;
Wu, Huiming ;
Xiao, Jie ;
Genc, Arda ;
Amine, Khalil ;
Thevuthasan, Suntharampillai ;
Baer, Donald R. ;
Zhang, Ji-Guang ;
Browning, Nigel D. ;
Liu, Jun ;
Wang, Chongmin .
ACS NANO, 2013, 7 (01) :760-767
[8]   Electrochemical intercalation of Li+ into nanodomain Li4Mn5O12 [J].
Ivanova, Sv ;
Zhecheva, E. ;
Nihtianova, D. ;
Mladenov, Ml ;
Stoyanova, R. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 561 :252-261
[9]   Lattice vibrations of materials for lithium rechargeable batteries - II. Lithium extraction-insertion in spinel structures [J].
Julien, CM ;
Camacho-Lopez, MA .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 108 (03) :179-186
[10]   Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel [J].
Julien, CM ;
Massot, M .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2003, 97 (03) :217-230