Global well-posedness for Schrodinger equations with derivative

被引:126
作者
Colliander, J [1 ]
Keel, M
Staffilani, G
Takaoka, H
Tao, T
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 3G3, Canada
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
[4] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
Schrodinger equations; global well-posedness;
D O I
10.1137/S0036141001384387
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the one-dimensional Schrodinger equation with derivative in the nonlinear term is globally well-posed in H-s for s> 2/3, for small L-2 data. The result follows from an application of the "I-method." This method allows us to de ne a modi cation of the energy norm H-1 that is almost conserved and can be used to perform an iteration argument. We also remark that the same argument can be used to prove that any quintic nonlinear defocusing Schrodinger equation on the line is globally well-posed for large data in H-s, for s> 2/3.
引用
收藏
页码:649 / 669
页数:21
相关论文
共 28 条
[1]   Ill-posedness for the derivative Schrodinger and generalized Benjamin-Ono equations [J].
Biagioni, HA ;
Linares, F .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (09) :3649-3659
[2]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[3]  
Bourgain J., 1993, GEOM FUNCT ANAL, V3, P209
[4]  
BOURGAIN J, 1997, SELECTA MATH, V3
[5]  
BOURGAIN J, 1999, AM MATH SOC C PUBL, V46
[6]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[7]  
COLLIANDER J, UNPUB SHARP GLOBAL W
[8]  
COLLIANDER J, UNPUB GLOBAL WELL PO
[9]  
COLLIANDER J, UNPUB MULTILINEAR ES
[10]   ON THE DERIVATIVE NONLINEAR SCHRODINGER-EQUATION [J].
HAYASHI, N ;
OZAWA, T .
PHYSICA D, 1992, 55 (1-2) :14-36