Crystal structure of human guanosine monophosphate reductase 2 (GMPR2) in complex with GMP

被引:26
作者
Li, JX
Wei, ZY
Zheng, M
Gu, X
Deng, YF
Qiu, R
Chen, F
Ji, CN [1 ]
Gong, WM
Xie, Y
Mao, YM
机构
[1] Fudan Univ, State Key Lab Genet Engn, Inst Genet, Sch Life Sci, Shanghai 200433, Peoples R China
[2] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
基金
中国国家自然科学基金;
关键词
guanosine monophosphate reductase 2; GMP; crystal structure; purine salvage;
D O I
10.1016/j.jmb.2005.11.047
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Guanosine monophosphate reductase (GMPR) catalyzes the irreversible and NADPH-dependent reductive deamination of GMP to IMP, and plays a critical role in re-utilization of free intracellular bases and purine nucleosides. Here, we report the first crystal structure. of human GMP reducatase 2 (hGMPR2) in complex with GMP at 3.0 angstrom resolution. The protein forms a tetramer composed of subunits adopting the ubiquitous (alpha/beta)(8) barrel fold. Interestingly, the substrate GMP is bound to hGMPR2 through interactions with Met269, Ser270, Arg286, Ser288, and Gly290; this makes the conformation of the adjacent flexible binding region (residues 268-289) fixed, much like a door on a hinge. Structure comparison and sequence alignment analyses show that the conformation of the active site loop (residues 179-187) is similar to those of hGMPR1 and inosine monophosphate dehydrogenases (IMPDHs). We propose that Cys186 is the potential active site, and that the conformation of the loop (residues 129-133) suggests a preference for the coenzyme NADPH over NADH. This structure provides important information towards understanding the functions of members of the GMPR family. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:980 / 988
页数:9
相关论文
共 36 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   NUCLEOTIDE-SEQUENCE OF THE GENE ENCODING THE GMP REDUCTASE OF ESCHERICHIA-COLI-K12 [J].
ANDREWS, SC ;
GUEST, JR .
BIOCHEMICAL JOURNAL, 1988, 255 (01) :35-43
[3]   PROBING THE ACTIVE-SITE OF HUMAN IMP DEHYDROGENASE USING HALOGENATED PURINE RIBOSIDE 5'-MONOPHOSPHATES AND COVALENT MODIFICATION REAGENTS [J].
ANTONINO, LC ;
STRAUB, K ;
WU, JC .
BIOCHEMISTRY, 1994, 33 (07) :1760-1765
[4]   The role of gene duplication in the evolution of purine nucleotide salvage pathways [J].
Becerra, A ;
Lazcano, A .
ORIGINS OF LIFE AND EVOLUTION OF BIOSPHERES, 1998, 28 (4-6) :539-553
[5]   CLONING, SEQUENCING, AND STRUCTURAL-ANALYSIS OF THE DNA ENCODING INOSINE MONOPHOSPHATE DEHYDROGENASE (EC-1.1.1.205) FROM TRITRICHOMONAS-FETUS [J].
BECK, JT ;
ZHAO, S ;
WANG, CC .
EXPERIMENTAL PARASITOLOGY, 1994, 78 (01) :101-112
[6]  
Berens Randolph L., 1995, P89, DOI 10.1016/B978-012473345-9/50007-6
[7]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[8]   Ribbons [J].
Carson, M .
MACROMOLECULAR CRYSTALLOGRAPHY, PT B, 1997, 277 :493-505
[9]   Crystal structure of human type II inosine monophosphate dehydrogenase: Implications for ligand binding and drug design [J].
Colby, TD ;
Vanderveen, K ;
Strickler, MD ;
Markham, GD ;
Goldstein, BM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (07) :3531-3536
[10]   NADPH-dependent GMP reductase isoenzyme of human (GMPR2) - Expression, purification, and kinetic properties [J].
Deng, YF ;
Wang, Z ;
Ying, K ;
Gu, SH ;
Ji, CN ;
Huang, Y ;
Gu, X ;
Wang, YR ;
Xu, YM ;
Li, Y ;
Xie, Y ;
Mao, YM .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2002, 34 (09) :1035-1050