Enhanced Stabilization and Easy Phase Transfer of CsPbBr3 Perovskite Quantum Dots Promoted by High-Affinity Polyzwitterionic Ligands

被引:130
作者
Wang, Sisi [1 ]
Du, Liang [1 ]
Jin, Zhicheng [1 ]
Xin, Yan [2 ]
Mattoussi, Hedi [1 ]
机构
[1] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA
[2] Florida State Univ, Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
基金
美国国家科学基金会;
关键词
CESIUM LEAD HALIDE; COLLOIDAL NANOCRYSTALS; POLYETHYLENE-GLYCOL; CRYSTAL-STRUCTURE; CSPBX3; X; STABILITY; POLYMER; LIGHT; COMPACT; ACID;
D O I
10.1021/jacs.0c03682
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The successful growth of colloidal lead halide perovskite quantum dots (PQDs) has generated tremendous interest in the community, due to the unique properties and the promise PQDs offer for use in applications involving light-emitting devices and solar cell technology. However, tangible progress in probing their fundamental properties and/or their integration into optoelectronic devices has been hampered by issues of colloidal and photophysical instability. Here, we introduce a promising surface coating strategy relying on a polyzwitterion polymer, where high-affinity binding onto the QDs is driven by multicoordinating electrostatic interactions with the ion-rich surfaces of CsPbBr3 PQDs. The polymer ligands were synthesized by installing a stoichiometric mixture of amine-modified sulfobetaine anchors and solubilizing motifs on poly(isobutylene-alt-maleic anhydride), PIMA, via nucleophilic addition reaction. We find that this coating approach imparts enhanced colloidal and photophysical stability to the nanocrystals over a broad range of solvent conditions and in powder form. This approach also allows easy phase transfer of the PQDs from nonpolar media to an array of solutions with varying polarities and properties. Additionally, the stabilization strategy preserves the photophysical and structural characteristics of the nanocrystals over a period extending to 1.5 years under certain conditions.
引用
收藏
页码:12669 / 12680
页数:12
相关论文
共 67 条
  • [1] Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals
    Akkerman, Quinten A.
    Raino, Gabriele
    Kovalenko, Maksym V.
    Manna, Liberato
    [J]. NATURE MATERIALS, 2018, 17 (05) : 394 - 405
  • [2] [Anonymous], 1975, Introduction to Infrared and Raman Spectroscopy
  • [3] Baranov D, 2020, CHEM SCI, V11, P3986, DOI [10.1039/d0sc00738b, 10.1039/D0SC00738B]
  • [4] Highly Luminescent Colloidal Nanoplates of Perovskite Cesium Lead Halide and Their Oriented Assemblies
    Bekenstein, Yehonadav
    Koscher, Brent A.
    Eaton, Samuel W.
    Yang, Peidong
    Alivisatos, A. Paul
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (51) : 16008 - 16011
  • [5] Berne B.J., 2000, Dynamic light scattering : with applications to chemistry, biology, and physics, pvii
  • [6] Coherent Nanotwins and Dynamic Disorder in Cesium Lead Halide Perovskite Nanocrystals
    Bertolotti, Federica
    Protesescu, Loredana
    Kovalenko, Maksym V.
    Yakunin, Sergii
    Cervellino, Antonio
    Billinge, Simon J. L.
    Terban, Maxwell W.
    Pedersen, Jan Skov
    Masciocchi, Norberto
    Guagliardi, Antonietta
    [J]. ACS NANO, 2017, 11 (04) : 3819 - 3831
  • [7] Rationalizing and Controlling the Surface Structure and Electronic Passivation of Cesium Lead Halide Nanocrystals
    Bodnarchuk, Maryna I.
    Boehme, Simon C.
    ten Brinck, Stephanie
    Bernasconi, Caterina
    Shynkarenko, Yevhen
    Krieg, Franziska
    Widmer, Roland
    Aeschlimann, Beat
    Guenther, Detlef
    Kovalenko, Maksym V.
    Infante, Ivan
    [J]. ACS ENERGY LETTERS, 2019, 4 (01) : 63 - 74
  • [8] Boles MA, 2016, NAT MATER, V15, P141, DOI [10.1038/NMAT4526, 10.1038/nmat4526]
  • [9] Crystal Structure of Individual CsPbBr3 Perovskite Nanocubes
    Brennan, Michael C.
    Kuno, Masaru
    Rouvimov, Sergei
    [J]. INORGANIC CHEMISTRY, 2019, 58 (02) : 1555 - 1560
  • [10] Surface Termination of CsPbBr3 Perovskite Quantum Dots Determined by Solid-State NMR Spectroscopy
    Chen, Yunhua
    Smock, Sara R.
    Flintgruber, Anne H.
    Perras, Frederic A.
    Brutchey, Richard L.
    Rossini, Aaron J.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (13) : 6117 - 6127