Refinement indicator for mesh adaption in shallow-water modeling

被引:14
作者
Tate, Jennifer N. [1 ]
Berger, R. C. [1 ]
Stockstill, Richard L. [1 ]
机构
[1] USA, Engineer Res & Dev Ctr, Coastal Hydraul Lab, Vicksburg, MS 39180 USA
来源
JOURNAL OF HYDRAULIC ENGINEERING-ASCE | 2006年 / 132卷 / 08期
关键词
hydrodynamics; simulation; computation; shallow water;
D O I
10.1061/(ASCE)0733-9429(2006)132:8(854)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Automatic mesh refinement can create suitable resolution for a hydrodynamic simulation in a computationally efficient manner. Development of an automatic adaptive procedure will rely on estimating and/or controlling computational error by adapting the mesh parameters with respect to a particular measurement. Since a primary source of error in a discrete approximation of the shallow-water equations is inadequate mesh resolution, an adaptive mesh can be an efficient approach to increase accuracy. This paper introduces a simple indicator for the shallow water equations that measures the error in a norm of mass conservation to determine which elements require refinement or coarsening. The resulting adaptive grid gives results comparable to a much higher resolution (uniformly refined) mesh with less computational expense.
引用
收藏
页码:854 / 857
页数:4
相关论文
共 9 条
[1]   A-POSTERIORI ESTIMATION AND ADAPTIVE-CONTROL OF THE POLLUTION ERROR IN THE H-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
STROUBOULIS, T ;
UPADHYAY, CS ;
GANGARAJ, SK .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (24) :4207-4235
[2]   FINITE-ELEMENT MODEL FOR HIGH-VELOCITY CHANNELS [J].
BERGER, RC ;
STOCKSTILL, RL .
JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1995, 121 (10) :710-716
[3]   Discrete fluxes and mass balance in finite elements [J].
Berger, RC ;
Howington, SE .
JOURNAL OF HYDRAULIC ENGINEERING, 2002, 128 (01) :87-92
[4]  
Cecchi MM, 1999, INT J NUMER METH FL, V31, P285, DOI 10.1002/(SICI)1097-0363(19990915)31:1<285::AID-FLD969>3.0.CO
[5]  
2-6
[6]  
HENSLEY J, 2003, P HPC US GROUP C BEL
[7]   The continuous Galerkin method is locally conservative [J].
Hughes, TJR ;
Engel, G ;
Mazzei, L ;
Larson, MG .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 163 (02) :467-488
[8]   Numerical stability and error analysis for the incompressible Navier-Stokes equations [J].
Prudhomme, S ;
Oden, JT .
COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2002, 18 (11) :779-787
[9]  
PRUDHOMME S, 1999, THESIS U TEXAS AUSTI