Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and Total Mass Balance (1840-2010)

被引:52
作者
Box, Jason E. [1 ]
Colgan, William [2 ,3 ]
机构
[1] Ohio State Univ, Byrd Polar Res Ctr, Columbus, OH 43210 USA
[2] Geol Survey Denmark & Greenland GEUS, Copenhagen, Denmark
[3] Univ Colorado, NOAA, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
关键词
Glaciers; Ice sheets; Snowmelt; icemelt; Ice loss; growth; SEA-LEVEL RISE; TIDEWATER GLACIERS; JAKOBSHAVN ISBRAE; OUTLET GLACIERS; ABLATION ZONE; MELT; ACCELERATION; 21ST-CENTURY; VARIABILITY; DYNAMICS;
D O I
10.1175/JCLI-D-12-00546.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Greenland ice sheet mass loss to the marine environment occurs by some combination of iceberg calving and underwater melting (referred to here as marine ice loss, L-M). This study quantifies the relation between L-M and meltwater runoff (R) at the ice sheet scale. A theoretical basis is presented explaining how variability in R can be expected to govern much of the L-M variability over annual to decadal time scales. It is found that R enhances L-M through three processes: 1) increased glacier discharge by ice warming-softening and basal lubrication-sliding; 2) increased calving susceptibility through undercutting glacier front geometry and reducing ice integrity; and 3) increased underwater melting from forcing marine convection. Applying a semiempirical L-M f(R) parameterization to a surface mass balance reconstruction enables total ice sheet mass budget closure over the 1840-2010 period. The estimated cumulative 171-yr net ice sheet sea level contribution is 25 +/- 10 mm, the rise punctuated by periods of ice sheet net mass gain (sea level drawdown) (1893-1900, 1938-47, and 1972-98). The sea level contribution accelerated at 27.6 mm yr(-1) century(-1) over the entire reconstruction, reaching a peak sea level rise contribution of 6.1 mm decade(-1) during 2002-10.
引用
收藏
页码:6990 / 7002
页数:13
相关论文
共 67 条
[31]   Global ocean heat content 1955-2008 in light of recently revealed instrumentation problems [J].
Levitus, S. ;
Antonov, J. I. ;
Boyer, T. P. ;
Locarnini, R. A. ;
Garcia, H. E. ;
Mishonov, A. V. .
GEOPHYSICAL RESEARCH LETTERS, 2009, 36
[32]   Warming of the world ocean, 1955-2003 [J].
Levitus, S ;
Antonov, J ;
Boyer, T .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (02) :1-4
[33]   Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations [J].
Mann, ME ;
Bradley, RS ;
Hughes, MK .
GEOPHYSICAL RESEARCH LETTERS, 1999, 26 (06) :759-762
[34]   Submarine melting at the terminus of a temperate tidewater glacier, LeConte Glacier, Alaska, USA [J].
Motyka, RJ ;
Hunter, L ;
Echelmeyer, KA ;
Connor, C .
ANNALS OF GLACIOLOGY, VOL 36, 2003, 36 :57-65
[35]   Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sheet mass changes [J].
Murray, T. ;
Scharrer, K. ;
James, T. D. ;
Dye, S. R. ;
Hanna, E. ;
Booth, A. D. ;
Selmes, N. ;
Luckman, A. ;
Hughes, A. L. C. ;
Cook, S. ;
Huybrechts, P. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2010, 115
[36]   A physically based calving model applied to marine outlet glaciers and implications for the glacier dynamics [J].
Nick, F. M. ;
van der Veen, C. J. ;
Vieli, A. ;
Benn, D. I. .
JOURNAL OF GLACIOLOGY, 2010, 56 (199) :781-794
[37]   Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus [J].
Nick, Faezeh M. ;
Vieli, Andreas ;
Howat, Ian M. ;
Joughin, Ian .
NATURE GEOSCIENCE, 2009, 2 (02) :110-114
[38]  
Nye J.F., 1976, J GLACIOL, V17, P181, DOI [DOI 10.3189/S002214300001354X, DOI 10.1017/S002214300001354X]
[39]   Calving on tidewater glaciers amplified by submarine frontal melting [J].
O'Leary, M. ;
Christoffersen, P. .
CRYOSPHERE, 2013, 7 (01) :119-128
[40]   Kinematic constraints on glacier contributions to 21st-century sea-level rise [J].
Pfeffer, W. T. ;
Harper, J. T. ;
O'Neel, S. .
SCIENCE, 2008, 321 (5894) :1340-1343