CRITERIA FOR UNIVALENCE AND QUASICONFORMAL EXTENSION FOR HARMONIC MAPPINGS ON PLANAR DOMAINS

被引:3
作者
Efraimidis, Iason [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Box 41042, Lubbock, TX 79409 USA
来源
ANNALES FENNICI MATHEMATICI | 2021年 / 46卷 / 02期
关键词
Harmonic mappings; Schwarzian derivative; univalence criterion; quasiconformal extension;
D O I
10.5186/aasfm.2021.4669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If 11 is a simply connected domain in C then, according to the Ahlfors-Gehring theorem, 11 is a quasidisk if and only if there exists a sufficient condition for the univalence of holomorphic functions in 11 in relation to the growth of their Schwarzian derivative. We extend this theorem to harmonic mappings by proving a univalence criterion on quasidisks. We also show that the mappings satisfying this criterion admit a homeomorphic extension to C and, under the additional assumption of quasiconformality in 11, they admit a quasiconformal extension to C. The Ahlfors-Gehring theorem has been extended to finitely connected domains 11 by Osgood, Beardon and Gehring, who showed that a Schwarzian criterion for univalence holds in 11 if and only if the components of a11 are either points or quasicircles. We generalize this theorem to harmonic mappings.
引用
收藏
页码:1123 / 1134
页数:12
相关论文
共 26 条
  • [1] Linear extension operators between spaces of Lipschitz maps and optimal transport
    Ambrosio, Luigi
    Puglisi, Daniele
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 1 - 21
  • [2] Duality and distance formulas in Lipschitz-Holder spaces
    Angrisani, Francesca
    Ascione, Giacomo
    D'Onofrio, Luigi
    Manzo, Gianluigi
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (02) : 401 - 419
  • [3] Orlicz spaces with a o-O type structure
    Angrisani, Francesca
    Ascione, Giacomo
    Manzo, Gianluigi
    [J]. RICERCHE DI MATEMATICA, 2019, 68 (02) : 841 - 857
  • [4] A GENERAL ATOMIC DECOMPOSITION THEOREM AND BANACHS CLOSED RANGE THEOREM
    BONSALL, FF
    [J]. QUARTERLY JOURNAL OF MATHEMATICS, 1991, 42 (165) : 9 - 14
  • [5] Bouchitté G, 2005, RIV MAT UNIV PARMA, V4, P127
  • [6] Duality, reflexivity and atomic decompositions in Banach spaces
    Carando, Daniel
    Lassalle, Silvia
    [J]. STUDIA MATHEMATICA, 2009, 191 (01) : 67 - 80
  • [7] Atomic decompositions, two stars theorems, and distances for the Bourgain-Brezis-Mironescu space and other big spaces
    D'Onofrio, Luigi
    Greco, Luigi
    Perfekt, Karl-Mikael
    Sbordone, Carlo
    Schiattarella, Roberta
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (03): : 653 - 661
  • [8] The space JNp: Nontriviality and duality
    Dafni, Galia
    Hytonen, Thomas
    Korte, Riikka
    Yue, Hong
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (03) : 577 - 603
  • [9] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [10] Gasymov T, 2018, SAHAND COMMUN MATH A, V9, P15