Multiplicity of Solutions for an Elliptic Problem with Critical Sobolev-Hardy Exponents and Concave-Convex Nonlinearities

被引:0
作者
Li, Juan [1 ]
Tong, Yuxia [2 ]
机构
[1] Ningbo Univ, Dept Math, Ningbo 315211, Zhejiang, Peoples R China
[2] Hebei United Univ, Coll Sci, Tangshan 063009, Peoples R China
基金
中国国家自然科学基金;
关键词
POSITIVE SOLUTIONS;
D O I
10.1155/2014/180105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of multiple solutions for the following elliptic problem: -Delta(p)u - mu(vertical bar u vertical bar(p-2)u/vertical bar x vertical bar(p)) = (vertical bar u vertical bar(p)*(t)-2/vertical bar x vertical bar t)u + lambda(vertical bar u vertical bar(q-2)/vertical bar x vertical bar(s))u, u epsilon W-0(1,p)(Omega). We prove that if 1 <= q < p < N, then there is a mu(0), such that for any mu epsilon (0,mu(0)), the above mentioned problem possesses infinitely many weak solutions. Our result generalizes a similar result (Azorero and Alonso, 1991).
引用
收藏
页数:6
相关论文
共 11 条
[1]  
[Anonymous], J MATH SCI ADV APPL
[2]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[3]  
CAFFARELLI L, 1984, COMPOS MATH, V53, P259
[4]   Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents [J].
Ghoussoub, N ;
Yuan, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (12) :5703-5743
[5]  
Hardy G.H, 1988, Inequalities
[7]   On the quasilinear elliptic problem with a critical Hardy-Sobolev exponent and a Hardy term [J].
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (08) :2432-2444
[8]   On the quasilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy terms [J].
Kang, Dongsheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (07) :1973-1985
[9]  
Lions P-L., 1985, Rev. Mat. Iberoamericana, V1, P145, DOI [DOI 10.4171/RMI/6, 10.4171/rmi/6]
[10]  
Rabinowitz P.H., 1986, CBMS Regional Conference Series in Mathematics, V65