Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits

被引:586
作者
Boes, Andreas [1 ,2 ]
Corcoran, Bill [2 ,3 ]
Chang, Lin [4 ]
Bowers, John [4 ]
Mitchell, Arnan [1 ,2 ]
机构
[1] RMIT Univ, Sch Engn, Melbourne, Vic 3001, Australia
[2] Monash Univ, ARC Ctr Ultra High Bandwidth Devices Opt Syst CUD, Melbourne, Vic 3168, Australia
[3] Monash Univ, Dept Elect & Comp Syst Engn, Melbourne, Vic 3168, Australia
[4] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
澳大利亚研究理事会;
关键词
integrated photonics; lithium niobate; nonlinear optics; optoelectronics; photonic integrated circuits; RIDGE WAVE-GUIDES; THIN-FILM; SILICON-NITRIDE; 2ND-HARMONIC GENERATION; HYBRID SILICON; ON-CHIP; MICRORING RESONATORS; GRATING COUPLER; BRAGG GRATINGS; LINBO3;
D O I
10.1002/lpor.201700256
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Lithium niobate on insulator (LNOI) technology is revolutionizing the lithium niobate industry, enabling higher performance, lower cost and entirely new devices and applications. The availability of LNOI wafers has sparked significant interest in the platform for integrated optical applications, as LNOI offers the attractive material properties of lithium niobate, while also offering the stronger optical confinement and a high optical element integration density that has driven the success of more mature silicon and silicon nitride (SiN) photonics platforms. Due to some similarities between LNOI and SiN, established techniques and standards can readily be adapted to the LNOI platform including a significant array of interface approaches, device designs and also heterogeneous integration techniques for laser sources and photodetectors. In this contribution, we review the latest developments in this platform, examine where further development is necessary to achieve more functionalities in LNOI integrated optical circuits and make a few suggestions of interesting applications that could be realized in this platform.
引用
收藏
页数:19
相关论文
共 163 条
[1]   EFFICIENT WAVE-GUIDE ELECTRO-OPTIC TEREVERSIBLETM MODE CONVERTER-WAVELENGTH FILTER [J].
ALFERNESS, RC .
APPLIED PHYSICS LETTERS, 1980, 36 (07) :513-515
[2]   Quantum photonics at telecom wavelengths based on lithium niobate waveguides [J].
Alibart, Olivier ;
D'Auria, Virginia ;
De Micheli, Marc ;
Doutre, Florent ;
Kaiser, Florian ;
Labonte, Laurent ;
Lunghi, Tommaso ;
Picholle, Eric ;
Tanzilli, Sebastien .
JOURNAL OF OPTICS, 2016, 18 (10)
[3]  
[Anonymous], 2015, P IEEE PHOT C REST V, DOI DOI 10.1109/IPCON.2015.7323760
[4]   Photonic applications of lithium niobate crystals [J].
Arizmendi, L .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 2004, 201 (02) :253-283
[5]   INTERACTIONS BETWEEN LIGHT WAVES IN A NONLINEAR DIELECTRIC [J].
ARMSTRONG, JA ;
BLOEMBERGEN, N ;
DUCUING, J ;
PERSHAN, PS .
PHYSICAL REVIEW, 1962, 127 (06) :1918-+
[6]   Low-Loss (<1 dB) and Polarization-Insensitive Edge Fiber Couplers Fabricated on 200-mm Silicon-on-Insulator Wafers [J].
Bakir, B. Ben ;
de Gyves, A. Vazquez ;
Orobtchouk, R. ;
Lyan, P. ;
Porzier, C. ;
Roman, A. ;
Fedeli, J. -M. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (11) :739-741
[7]   Optical waveguides in lithium niobate: Recent developments and applications [J].
Bazzan, Marco ;
Sada, Cinzia .
APPLIED PHYSICS REVIEWS, 2015, 2 (04)
[8]   Sidewall gratings in ultra-low-loss Si3N4 planar waveguides [J].
Belt, Michael ;
Bovington, Jock ;
Moreira, Renan ;
Bauters, Jared F. ;
Heck, Martijn J. R. ;
Barton, Jonathon S. ;
Bowers, John E. ;
Blumenthal, Daniel J. .
OPTICS EXPRESS, 2013, 21 (01) :1181-1188
[9]   Spectral engineering by Gaussian phase-matching for quantum photonics [J].
Ben Dixon, P. ;
Shapiro, Jeffrey H. ;
Wong, Franco N. C. .
OPTICS EXPRESS, 2013, 21 (05) :5879-5890
[10]   Easy and versatile functionalization of lithium niobate wafers by hydrophobic trichlorosilanes [J].
Bennes, Jonathan ;
Ballandras, Sylvain ;
Cherioux, Frederic .
APPLIED SURFACE SCIENCE, 2008, 255 (05) :1796-1800