Inducing Nanoscale Morphology Changes of Pentaerythritol Tetranitrate Using a Heated Atomic Force Microscope Cantilever

被引:2
|
作者
Nafday, Omkar A. [1 ]
Weeks, Brandon L. [1 ]
King, William P. [2 ]
Lee, Jungchul [2 ]
机构
[1] Texas Tech Univ, Dept Chem Engn, Lubbock, TX 79409 USA
[2] Univ Illinois, Dept Mech Engn, Champaign, IL 61820 USA
关键词
atomic force microscope; pentaerythritol tetranitrate; temperature; thermal cantilever; THERMAL-DECOMPOSITION; PETN; CRYSTALS; DESIGN; SIZE; RDX;
D O I
10.1080/07370650802328830
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Controlling the morphology of pentaerythritol tetranitrate (PETN) is an important aspect in the nanodetonics research area. Detonation properties are highly dependent on surface area and morphology of PETN. For the first time we show that changes in morphology can be modified at the nanoscale by using a heated atomic force microscope (AFM) cantilever. At temperatures of65C, faceting of PETN islands is observed, whereas at higher temperatures (124C) the height of the islands decrease by an order of magnitude.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 50 条
  • [1] Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip
    Hua, Yueming
    Saxena, Shubham
    Clifford, Henderson
    King, William P.
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2007, 6 (02):
  • [2] Effect of Zn Doping on the Sublimation Rate of Pentaerythritol Tetranitrate Using Atomic Force Microscopy
    Mridha, Subrata
    Weeks, Brandon L.
    SCANNING, 2009, 31 (05) : 181 - 187
  • [3] Heated atomic force microscope cantilever with high resistivity for improved temperature sensitivity
    Liu, Joseph O.
    Somnath, Suhas
    King, William P.
    SENSORS AND ACTUATORS A-PHYSICAL, 2013, 201 : 141 - 147
  • [4] Nanoscale patterning of gold nanoparticles using an atomic force microscope
    Prime, D
    Paul, S
    Pearson, C
    Green, M
    Petty, MC
    MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2005, 25 (01): : 33 - 38
  • [5] Nanoscale indentation of polymer systems using the atomic force microscope
    Vanlandingham, MR
    McKnight, SH
    Palmese, GR
    Elings, JR
    Huang, X
    Bogetti, TA
    Eduljee, RF
    Gillespie, JW
    JOURNAL OF ADHESION, 1997, 64 (1-4) : 31 - 59
  • [6] Ultrasonic atomic force microscope with overtone excitation of cantilever
    Yamanaka, K
    Nakano, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1996, 35 (6B): : 3787 - 3792
  • [7] Cantilever contribution to the total electrostatic force measured with the atomic force microscope
    Guriyanova, Svetlana
    Golovko, Dmytro S.
    Bonaccurso, Elmar
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (02)
  • [8] Enhanced sensitivity to force gradients by using higher flexural modes of the atomic force microscope cantilever
    M. Hoummady
    E. Farnault
    Applied Physics A, 1998, 66 : S361 - S364
  • [9] Vibration frequency and sensitivity of an atomic force microscope cantilever with a crack
    Lee, Haw-Long
    Yang, Yu-Ching
    Chang, Win-Jin
    Journal of Computational and Theoretical Nanoscience, 2015, 12 (11) : 4329 - 4334
  • [10] Increasing the Image Contrast of Atomic Force Microscope by Using Improved Rectangular Micro Cantilever
    Sadeghi, Ali
    MECHANICAL AND AEROSPACE ENGINEERING, PTS 1-7, 2012, 110-116 : 4888 - 4892