Synthesis and application of magnetic graphene/iron oxides composite for the removal of U(VI) from aqueous solutions

被引:280
作者
Zong, Pengfei [1 ]
Wang, Shoufang [2 ]
Zhao, Yaolin [1 ]
Wang, Hai [1 ]
Pan, Hui [1 ]
He, Chaohui [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Nucl Sci & Technol, Xian 710049, Peoples R China
[2] English Weekly Co Ltd, Network Ctr, Taiyuan 030024, Peoples R China
基金
中国国家自然科学基金;
关键词
Fe3O4/GO; U(VI); pH; Ion strength; Temperature; MULTIWALLED CARBON NANOTUBES; HUMIC-ACID; IONIC-STRENGTH; ADSORPTION; NANOPARTICLES; SORPTION; URANIUM; WATER; THERMODYNAMICS; CU2+;
D O I
10.1016/j.cej.2013.01.038
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Graphene has been extensively concerned in multidisciplinary research fields due to its remarkably physicochemical characteristics. Herein, magnetic graphene/iron oxides composite (Fe3O4/GO) which was synthesized from graphene using a chemical reaction approach had been employed as a novel adsorbent for the preconcentration and solidification of U(VI) ions from aqueous solutions. The sorption behavior of U(VI) on the surface of Fe3O4/GO was carried out under ambient conditions such as contact time, pH and ionic strength according to concentration of C-U(VI)initial = 1.12 x 10(-4) mol/L. The Langmuir and Freundlich models were adopted to simulate sorption isotherms of U(VI) at three different temperatures relying on the concentration of C-U(VI)initial = 2.25 x 10(-5) to 2.24 x 10(-4) mol/L, the experimental results suggested that the sorption reaction was favored at higher temperature. The pH-dependent and ionic strength-independent U(VI) sorption on Fe3O4/GO demonstrated that the sorption mechanism of U(VI) was inner-sphere surface complexation at low pH values, whereas the removal of U(VI) was achieved by simultaneous precipitation and inner-sphere surface complexation at high pH values. The maximum sorption capacity of U(VI) on Fe3O4/GO at T = 293 K and pH = 5.5 +/- 0.1 was about 69.49 mg/g higher than majority of materials and nanomaterials reported. Magnetic separation has been considered as an effective and quick technique for separating magnetic particles, without filtration and centrifugation. The Fe3O4/GO can be favorably separated from aqueous solution under an applied magnetic field from large volumes of aqueous solutions. The experimental results show that the Fe3O4/GO is a promising adsorbent for the removal of radionuclides and heavy metal ions from large volumes of aqueous solution. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:45 / 52
页数:8
相关论文
共 50 条
[1]   The adsorption of Cu(II) ions on bentonite - a kinetic study [J].
Al-Qunaibit, MH ;
Mekhemer, WK ;
Zaghloul, AA .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2005, 283 (02) :316-321
[2]   Point of zero charge and intrinsic equilibrium constants of activated carbon cloth [J].
Babic, BM ;
Milonjic, SK ;
Polovina, MJ ;
Kaludierovic, BV .
CARBON, 1999, 37 (03) :477-481
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Permanent adsorption of organic solvents in graphite oxide and its effect on the thermal exfoliation [J].
Barroso-Bujans, F. ;
Cerveny, S. ;
Verdejo, R. ;
del Val, J. J. ;
Alberdi, J. M. ;
Alegria, A. ;
Colmenero, J. .
CARBON, 2010, 48 (04) :1079-1087
[5]  
Behabtu N, 2010, NAT NANOTECHNOL, V5, P406, DOI [10.1038/NNANO.2010.86, 10.1038/nnano.2010.86]
[6]   Uranium removal from groundwater by natural clinoptilolite zeolite: Effects of pH and initial feed concentration [J].
Camacho, Lucy Mar ;
Deng, Shuguang ;
Parra, Ramona R. .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 175 (1-3) :393-398
[7]   Europium Adsorption on Multiwall Carbon Nanotube/Iron Oxide Magnetic Composite in the Presence of Polyacrylic Acid [J].
Chen, C. L. ;
Wang, X. K. ;
Nagatsu, M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (07) :2362-2367
[8]  
Claudio L., 2010, INT J NUCLE, V5, P283
[9]   Water-Soluble Magnetic-Functionalized Reduced Graphene Oxide Sheets: In situ Synthesis and Magnetic Resonance Imaging Applications [J].
Cong, Huai-Ping ;
He, Jia-Jun ;
Lu, Yang ;
Yu, Shu-Hong .
SMALL, 2010, 6 (02) :169-173
[10]   Rapid removal of uranium from aqueous solutions using magnetic Fe3O4@SiO2 composite particles [J].
Fan, Fang-Li ;
Qin, Zhi ;
Bai, Jing ;
Rong, Wei-Dong ;
Fan, Fu-You ;
Tian, Wei ;
Wu, Xiao-Lei ;
Wang, Yang ;
Zhao, Liang .
JOURNAL OF ENVIRONMENTAL RADIOACTIVITY, 2012, 106 :40-46