Stiffness Estimation in Vision-Based Robotic Grasping Systems

被引:0
作者
Lin, Chi-Ying [1 ]
Hung, Wei-Ting [2 ]
Hsieh, Ping-Jung [1 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Mech Engn, Taipei 106, Taiwan
[2] Lite On Technol Corp, Taipei 114, Taiwan
来源
INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2016, PT I | 2016年 / 9834卷
关键词
Robotic grasping; Extended Kalman filter; Stiffness estimation; Sensor fusion;
D O I
10.1007/978-3-319-43506-0_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents an on-line estimation method which can find a mathematical expression of stiffness property of the objects grasped in visionbased robotic systems. A robot manipulator in conjunction with visual servo control is applied to autonomously grasp the object. To increase the accuracy of the object compression values associated with the used low-cost hardware, an extended Kalman filter is adopted to fuse the sensing data obtained from webcam and gripper encoder. The grasping forces are measured by a piezoresistive pressure sensor installed on the jaw of the manipulator. The force and position data are used to represent the stiffness property of the grasped objects. An on-line least square algorithm is applied to fit a stiffness equation with time-varying parameters. The experimental results verify the feasibility of the proposed method.
引用
收藏
页码:279 / 288
页数:10
相关论文
共 8 条
[1]   A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J].
Arulampalam, MS ;
Maskell, S ;
Gordon, N ;
Clapp, T .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) :174-188
[2]  
Cheng HT, 2015, IEEE ANN INT CONF CY, P36, DOI 10.1109/CYBER.2015.7287906
[3]   Vision guided autonomous robotic assembly and as-built scanning on unstructured construction sites [J].
Feng, Chen ;
Xiao, Yong ;
Willette, Aaron ;
McGee, Wes ;
Kamat, Vineet R. .
AUTOMATION IN CONSTRUCTION, 2015, 59 :128-138
[4]  
Hashimoto K, 2003, ADV ROBOTICS, V17, P969, DOI 10.1163/156855303322554373
[5]  
Kalman R. E., 1961, J BASIC ENG-T ASME, V83, P95, DOI [10.1115/1.3658902, DOI 10.1115/1.3658902]
[6]  
Li M, 2014, IEEE INT CONF ROBOT, P6784, DOI 10.1109/ICRA.2014.6907861
[7]   A neural tactile architecture applied to real-time stiffness estimation for a large scale of robotic grasping systems [J].
Pedreno-Molina, J. L. ;
Guerrero-Gonzalez, A. ;
Calabozo-Moran, J. ;
Lopez-Coronado, J. ;
Gorce, P. .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2007, 49 (04) :311-323
[8]  
Zhou A, 2011, IEEE IND ELEC, P2666