Direct Transformation of Amorphous Silicon Carbide into Graphene under Low Temperature and Ambient Pressure

被引:31
作者
Peng, Tao [1 ]
Lv, Haifeng [1 ]
He, Daping [1 ]
Pan, Mu [1 ]
Mu, Shichun [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
RAMAN-SPECTROSCOPY; BERRYS PHASE; CARBON; FILMS;
D O I
10.1038/srep01148
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A large-scale availability of the graphene is critical to the successful application of graphene-based electronic devices. The growth of epitaxial graphene (EG) on insulating silicon carbide (SiC) surfaces has opened a new promising route for large-scale high-quality graphene production. However, two key obstacles to epitaxial growth are extremely high requirements for almost perfectly ordered crystal SiC and harsh process conditions. Here, we report that the amorphous SiC (a-Si1-xCx) nano-shell (nano-film) can be directly transformed into graphene by using chlorination method under very mild reaction conditions of relative low temperature (800 degrees C) and the ambient pressure in chlorine (Cl-2) atmosphere. Therefore, our finding, the direct transformation of a-Si1-xCx into graphene under much milder condition, will open a door to apply this new method to the large-scale production of graphene at low costs.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Carbon onions as nanoscopic pressure cells for diamond formation [J].
Banhart, F ;
Ajayan, PM .
NATURE, 1996, 382 (6590) :433-435
[2]   A Raman spectroscopy study of individual SiC nanowires [J].
Bechelany, Mikhael ;
Brioude, Arnaud ;
Cornu, David ;
Ferro, Gabriel ;
Miele, Philippe .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (06) :939-943
[3]   Graphene formation mechanisms on 4H-SiC(0001) [J].
Bolen, Michael L. ;
Harrison, Sara E. ;
Biedermann, Laura B. ;
Capano, Michael A. .
PHYSICAL REVIEW B, 2009, 80 (11)
[4]   PHYSICS OF AMORPHOUS-SILICON CARBON ALLOYS [J].
BULLOT, J ;
SCHMIDT, MP .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1987, 143 (02) :345-418
[5]  
Chen ZP, 2011, NAT MATER, V10, P424, DOI [10.1038/NMAT3001, 10.1038/nmat3001]
[6]   Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material [J].
Eda, Goki ;
Fanchini, Giovanni ;
Chhowalla, Manish .
NATURE NANOTECHNOLOGY, 2008, 3 (05) :270-274
[7]   Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study [J].
Emtsev, K. V. ;
Speck, F. ;
Seyller, Th. ;
Ley, L. ;
Riley, J. D. .
PHYSICAL REVIEW B, 2008, 77 (15)
[8]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107