Prediction of MGMT Methylation Status of Glioblastoma Using Radiomics and Latent Space Shape Features

被引:3
|
作者
Palsson, Sveinn [1 ]
Cerri, Stefano [1 ]
Van Leemput, Koen [1 ,2 ]
机构
[1] Tech Univ Denmark, Dept Hlth Technol, Lyngby, Denmark
[2] Harvard Med Sch, Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Boston, MA 02115 USA
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II | 2022年 / 12963卷
关键词
MGMT prediction; Radiomics; Deep learning; Glioblastoma; Variational autoencoder; TEMOZOLOMIDE; SURVIVAL; EORTC;
D O I
10.1007/978-3-031-09002-8_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a method for predicting the status of MGMT promoter methylation in high-grade gliomas. From the available MR images, we segment the tumor using deep convolutional neural networks and extract both radiomic features and shape features learned by a variational autoencoder. We implemented a standard machine learning workflow to obtain predictions, consisting of feature selection followed by training of a random forest classification model. We trained and evaluated our method on the RSNA-ASNR-MICCAI BraTS 2021 challenge dataset and submitted our predictions to the challenge.
引用
收藏
页码:222 / 231
页数:10
相关论文
共 50 条
  • [1] Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study
    Li, Zhi-Cheng
    Bai, Hongmin
    Sun, Qiuchang
    Li, Qihua
    Liu, Lei
    Zou, Yan
    Chen, Yinsheng
    Liang, Chaofeng
    Zheng, Hairong
    EUROPEAN RADIOLOGY, 2018, 28 (09) : 3640 - 3650
  • [2] Radiomics signature: A potential biomarker for the prediction of MGMT promoter methylation in glioblastoma
    Xi, Yi-bin
    Guo, Fan
    Xu, Zi-liang
    Li, Chen
    Wei, Wei
    Tian, Ping
    Liu, Ting-ting
    Liu, Lin
    Chen, Gang
    Ye, Jing
    Cheng, Guang
    Cui, Long-biao
    Zhang, Hong-juan
    Qin, Wei
    Yin, Hong
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) : 1380 - 1387
  • [3] Improving MGMT methylation status prediction of glioblastoma through optimizing radiomics features using genetic algorithm-based machine learning approach
    Duyen Thi Do
    Yang, Ming-Ren
    Luu Ho Thanh Lam
    Nguyen Quoc Khanh Le
    Wu, Yu-Wei
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [4] Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study
    Zhi-Cheng Li
    Hongmin Bai
    Qiuchang Sun
    Qihua Li
    Lei Liu
    Yan Zou
    Yinsheng Chen
    Chaofeng Liang
    Hairong Zheng
    European Radiology, 2018, 28 : 3640 - 3650
  • [5] Learning MRI-based classification models for MGMT methylation status prediction in glioblastoma
    Kanas, Vasileios G.
    Zacharaki, Evangelia I.
    Thomas, Ginu A.
    Zinn, Pascal O.
    Megalooikonomou, Vasileios
    Colen, Rivka R.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 140 : 249 - 257
  • [6] Prediction of Prognosis in Glioblastoma Using Radiomics Features of Dynamic Contrast-Enhanced MRI
    Pak, Elena
    Choi, Kyu Sung
    Choi, Seung Hong
    Park, Chul-Kee
    Kim, Tae Min
    Park, Sung-Hye
    Lee, Joo Ho
    Lee, Soon-Tae
    Hwang, Inpyeong
    Yoo, Roh-Eul
    Kang, Koung Mi
    Yun, Tae Jin
    Kim, Ji-Hoon
    Sohn, Chul-Ho
    KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (09) : 1514 - 1524
  • [7] Predicting MGMT Promoter Methylation in Diffuse Gliomas Using Deep Learning with Radiomics
    Chen, Sixuan
    Xu, Yue
    Ye, Meiping
    Li, Yang
    Sun, Yu
    Liang, Jiawei
    Lu, Jiaming
    Wang, Zhengge
    Zhu, Zhengyang
    Zhang, Xin
    Zhang, Bing
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (12)
  • [8] Fusion Radiomics Features from Conventional MRI Predict MGMT Promoter Methylation Status in Lower Grade Gliomas
    Jiang, Chendan
    Kong, Ziren
    Liu, Sirui
    Feng, Shi
    Zhang, Yiwei
    Zhu, Ruizhe
    Chen, Wenlin
    Wang, Yuekun
    Lyu, Yuelei
    You, Hui
    Zhao, Dachun
    Wang, Renzhi
    Wang, Yu
    Ma, Wenbin
    Feng, Feng
    EUROPEAN JOURNAL OF RADIOLOGY, 2019, 121
  • [9] Computational pathology-based weakly supervised prediction model for MGMT promoter methylation status in glioblastoma
    He, Yongqi
    Duan, Ling
    Dong, Gehong
    Chen, Feng
    Li, Wenbin
    FRONTIERS IN NEUROLOGY, 2024, 15
  • [10] Radiomics for predicting MGMT status in cerebral glioblastoma: comparison of different MRI sequences
    Zheng, Fei
    Zhang, Lingling
    Chen, Hongyan
    Zang, Yuying
    Chen, Xuzhu
    Li, Yiming
    JOURNAL OF RADIATION RESEARCH, 2024, 65 (03) : 350 - 359