ANHARMONIC NONCOMMUTATIVE OSCILLATOR AT FINITE TEMPERATURE

被引:0
作者
Karaj-Abad, H. Sarvari [1 ]
Jahan, A. [1 ]
机构
[1] RIAAM, POB 55134-441, Maragha, Iran
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2016年 / 78卷 / 03期
关键词
Anharmonic oscillator; noncommutative oscillator; partition function; HARMONIC-OSCILLATOR;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Classical and quantum anharmonic noncommutative oscillators with quartic self-interacting potential are considered and the effect of self-interaction term on the free energy and partition function of both models is calculated to first order in coupling constant.
引用
收藏
页码:283 / 290
页数:8
相关论文
共 16 条
[1]   Analytical and numerical analysis of a rotational invariant D=2 harmonic oscillator in the light of different noncommutative phase-space configurations [J].
Abreu, Everton M. C. ;
Marcial, Mateus V. ;
Mendes, Albert C. R. ;
Oliveira, Wilson .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (11)
[2]  
Alavi SA, 2007, PROBL ATOM SCI TECH, P301
[3]   Harmonic oscillator in a background magnetic field in noncommutative quantum phase-space [J].
Ben Geloun, J. ;
Gangopadhyay, Sunandan ;
Scholtz, F. G. .
EPL, 2009, 86 (05)
[4]   Relativistic Oscillators in a Noncommutative Space: a Path Integral Approach [J].
Benzair, H. ;
Merad, M. ;
Boudjedaa, T. ;
Makhlouf, A. .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (1-2) :77-88
[5]  
Carmona J. M., 2002, INT J MOD PHYS A, V17, P2555
[6]  
Carmona J. M., 2001, MOD PHYS LETT A, V16, P2075
[7]  
Dadic I, 2005, ACTA PHYS SLOVACA, V55, P149
[8]  
Dragovic B., ARXIVHEPTH0401198
[9]   Path integrals in noncommutative quantum mechanics [J].
Dragovich, B ;
Rakic, Z .
THEORETICAL AND MATHEMATICAL PHYSICS, 2004, 140 (03) :1299-1308
[10]   Noncommutative quantum mechanics [J].
Gamboa, J ;
Loewe, M ;
Rojas, JC .
PHYSICAL REVIEW D, 2001, 64 (06)