New Identities from a Combinatorial Approach to Generalized Fibonacci and Generalized Lucas Numbers

被引:0
作者
da Silva, Robson [1 ]
机构
[1] Fed Univ Sao Paulo UNIFESP, Dept Sci & Technol, BR-12247014 Sao Jose Dos Campos, SP, Brazil
关键词
Generalized Fibonacci number; Generalized Lucas number; Tiling; TILINGS; PROOFS; GRAPHS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present here some new identities for generalizations of Fibonacci and Lucas numbers by combinatorially interpreting these numbers in terms of numbers of certain tilings of a 1 x m board. As a consequence, some new interesting identities involving the ordinaries Fibonacci and Lucas numbers are derived.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 14 条
  • [1] Bednarz U, 2015, ARS COMBINATORIA, V118, P391
  • [2] BENJAMIN A. T., 2003, DOLCIANI MATH EXP, V27
  • [3] Tiling proofs of recent sum identities involving Pell numbers
    Benjamin, Arthur T.
    Plott, Sean S.
    Sellers, James A.
    [J]. ANNALS OF COMBINATORICS, 2008, 12 (03) : 271 - 278
  • [4] Briggs K. S., 2011, ANN COMB, V14, P407
  • [5] Bród D, 2013, ARS COMBINATORIA, V112, P397
  • [6] Kwasnik M, 2000, ARS COMBINATORIA, V55, P139
  • [7] A tiling approach to eight identities of Rogers
    Little, David P.
    Sellers, James A.
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) : 694 - 709
  • [8] New proofs of identities of Lebesgue and Gollnitz via tilings
    Little, David R.
    Sellers, James A.
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (01) : 223 - 231
  • [9] Sellers J. A., 2002, J INTEGER SEQ, V5
  • [10] A combinatorial proof of an identity of Ramanujan using tilings
    Stabel, Eduardo C.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2011, 42 (02): : 203 - 212